Jair Minoro Abe on Paraconsistent Engineering

  • Seiki AkamaEmail author
Part of the Intelligent Systems Reference Library book series (ISRL, volume 110)


An overview of Professor Abe’s scientific work is presented, emphasizing the main results obtained by him in his research activity. He has done a lot of work on paraconsistent logics and their applications. We survey his academic career and published works.


Jair Minoro Abe Paraconsistent logics Annotated logics 



I am grateful to Prof. Jair Minoro Abe for his valuable comments.


  1. 1.
    Abe, J.M.: Fundamentos da Geometria Ordenada (in Portuguese). MSc Thesis, University of São Paulo, São Paulo (1983)Google Scholar
  2. 2.
    Abe, J.M.: Lógica e Paraconsistencia, em: Novo pacto da Ciência, pp. 185–191. A Crise das Paradigmas, Anais, Escola de Comunicacão e Artes - USP (1991)Google Scholar
  3. 3.
    Abe, J.M.: On the Foundations of Annotated Logics (in Portuguese). Ph.D. Thesis, University of São Paulo (1992)Google Scholar
  4. 4.
    Abe, J.M.: On annotated modal logic. Mathematica Japonica 40, 553–560 (1994)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Abe, J.M.: Some recent applications of paraconsistent systems to AI. Logique et Analyse 157, 83–96 (1997)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Abe, J.M.: Curry algebra \(P\tau \). Logique et Analyse 161-162-163, 5–15 (1998)Google Scholar
  7. 7.
    Abe, J.M.: Paraconsistent Artificial Neural Networks; An introduction. In: Carbonell, J.G., Siekmann, J. (eds.) Lecture Notes in Artificial Intelligence, vol. 3214, pp. 942–948. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Abe, J.M. (ed.): Paraconsitent Inteligent Based-Systems. Springer, Heidelberg (2015)Google Scholar
  9. 9.
    Abe, J.M., Akama, S.: Annotated logics \(Q\tau \) and ultraproduct. Logique et Analyse 160, 335–343 (1997) (published in 2000)Google Scholar
  10. 10.
    Abe, J.M., Akama, S.: On some aspects of decidability of annotated systems. In: Arabnia, H.R. (ed.) Proceedings of the International Conference on Artificial Intelligence, vol. II, pp. 789–795. CREA Press (2001)Google Scholar
  11. 11.
    Abe, J.M., Akama, S.: Annotated temporal logics \(\varDelta \tau \). In: Advances in Artificial Intelligence: Proceedings of IBERAIA-SBIA, LNCS, vol. 1952, pp. 217–226. Springer, Berlin (2000)Google Scholar
  12. 12.
    Abe, J.M., Akama, S., Nakamatsu, K.: Monadic curry algebras \(Q\tau \). In: Knowledge-Based Intelligent Information and Engineering Systems: Proceedings of KES 2007—WIRN 2007, Part II, pp. 893–900, Lecture Notes on Artificial Intelligence, vol. 4693 (2007)Google Scholar
  13. 13.
    Abe, J.M., Akama, S., Nakamatsu, K.: Introduction to Annotated Logics. Springer, Heidelberg (2016)zbMATHGoogle Scholar
  14. 14.
    Akama, S., Abe, J.M.: Many-valued and annotated modal logics. In: Proceedings of the 28th International Symposium on Multiple-Valued Logic, pp. 114–119, Fukuoka (1998)Google Scholar
  15. 15.
    Akama, S., Abe, J.M.: Fuzzy annotated logics. In: Proceedings of IPMU’2000, pp. 504–508, Madrid, Spain (2000)Google Scholar
  16. 16.
    Akama, S., Abe, J.M., Nakamatsu, K.: Constructive discursive logic with strong negation. Logique et Analyse 215, 395–408 (2011)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Ávila, B.C.: Uma Abordagem Paraconsitente Basea da em Logica Evidencial para Tratar Excecoes em Sistemas de Frames com Multipla Heranca (in Portuguese). Ph.D. Thesis, University of São Paulo (1996)Google Scholar
  18. 18.
    Avila, B.C., Abe, J.M., Prado, J.P.A: ParaLog-e: A paraconsistent evidential logic programming language. In: Proceedings of the 17th International Conference on the Chilean Computer Society, pp. 2–8. IEEE Computer Society Press, Valparaiso (1997)Google Scholar
  19. 19.
    Blair, H.A., Subrahmanian, V.S.: Paraconsistent logic programming. Theor. Comput. Sci. 68, 135–154 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Carvalho, F.R., Abe, J.M.: Tomadas de Decisão com Ferramentas da Lógica Paraconsistente Anotada (in Portuguese), Editora Edgard Blucher Ltda (2011)Google Scholar
  21. 21.
    da Costa, N.C.A., Abe, J.M., Subrahmanian, V.S.: Remarks on annotated logic. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 37, 561–570 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    da Costa, N., Prado, J., Abe, J.M., Ávila, B., Rillo, M.: Paralog: Um Prolog paraconsistente baseado em Logica Anotada, Colecao Documentos, Serie Logica e Teoria da Ciencia, IEA-USP, n\(^{\circ }\) 18 (1995)Google Scholar
  23. 23.
    da Costa, N.C.A., Subrahmanian, V.S., Vago, C.: The paraconsistent logic \(P{\cal T}\). Zeitschrift für mathematische Logik und Grundlagen der Mathematik 37, 139–148 (1991)CrossRefzbMATHGoogle Scholar
  24. 24.
    Da Silva Filho, J.I.: Métodos de interpretação da Lógica Paraconsistente Anotada com anotação com dois valores LPA2v com construção de Algoritmo e implementação de Circuitos Eletrônicos (in Portuguese), Ph.D. Thesis, University of São Paulo (1999)Google Scholar
  25. 25.
    Da Silva Filho, J.I., Abe, J.M.: Emmy: a paraconsistent autonomous mobile robot. In: Abe, J.M., Da Silva Filho, J.I. (eds.) Frontiers in Artificial Intelligence and its Applications, pp. 53–61. IOS Press, Amsterdam (2001)Google Scholar
  26. 26.
    Lopes, H.F.S., Abe, J.M., Anghinah, R.: Application of paraconsistent artificail networs as a method of aid in the diagnosis of Alzheimer disease. J. Med. Syst. 1–9 (2009)Google Scholar
  27. 27.
    Mario, M.C., Abe, J.M., Ortega, N., Jr, Del Santo, M.,: Paraconsistent neural network as auxiliary in cephalometic diagnosis. Artif. Org. 34, 215–221 (2010)Google Scholar
  28. 28.
    Nakamatsu, K., Abe, J.M., Suzuki, A.: Annotated semantics for deefeasible deontic reasoning, pp. 470–478. Rough Sets and Current Trends in Computing, Lecture Notes in Artificial Intelligence series (2000)Google Scholar
  29. 29.
    Nakamatsu, K., Abe, J.M., Akama, S.: Intelligent safety verification for pipeline process order control based on bf-EVALPSN. In: ICONS 2012: The Seventh International Conference on Systems, pp. 175–182 (2012)Google Scholar
  30. 30.
    Nelson, D.: Constructible falsity. J. Symb. Logic 14, 16–26 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Prado, J.P.A.: Uma Arquitetura em IA Basea da em Logica Paraconsistente. Ph.D. Thesis, University of São Paulo (2006)Google Scholar
  32. 32.
    Subrahmanian, V.: On the semantics of quantitative logic programs. In: Proceedings of the 4th IEEE Symposium on Logic Programming, pp. 173–182 (1987)Google Scholar
  33. 33.
    Suppes, P.: The axiomatic method in empirical science. In: Henkin, L. (ed.) Proceedings of the Tarskian Symposium, pp. 465–479. American Mathematical Society (1974)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.C-RepublicAsao-ku, KawasakiJapan

Personalised recommendations