Kinematic Analysis of the Human Thumb with Foldable Palm

  • Visakha NanayakkaraEmail author
  • Ahmad Ataka
  • Demetrios Venetsanos
  • Olga Duran
  • Nikolaos Vitzilaios
  • Thrishantha Nanayakkara
  • M. Necip Sahinkaya
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9716)


There have been numerous attempts to develop anthropomorphic robotic hands with varying levels of dexterous capabilities. However, these robotic hands often suffer from a lack of comprehensive understanding of the musculoskeletal behavior of the human thumb with integrated foldable palm. This paper proposes a novel kinematic model to analyze the importance of thumb-palm embodiment in grasping objects. The model is validated using human demonstrations for five precision grasp types across five human subjects. The model is used to find whether there are any co-activations among the thumb joint angles and muskuloskeletal parameters of the palm. In this paper we show that there are certain pairs of joints that show stronger linear relationships in the torque space than in joint angle space. These observations provide useful design guidelines to reduce control complexity in anthropomorphic robotic thumbs.


Thumb kinematics Foldable palm Joint angle correlations Torque correlations 


  1. 1.
    Martell, J.S., Gini, G.: Robotic hands: design review and proposal of new design process. World Acad. Sci. Eng. Technol. 26, 85–90 (2007)Google Scholar
  2. 2.
    Santello, M., Flanders, M., Soechting, J.F.: Postural hand synergies for tool use. J. Neurosci. 18(23), 10105–10115 (1998)Google Scholar
  3. 3.
    Grinyagin, I.V., Biryukova, E.V., Maier, M.A.: Kinematic and dynamic synergies of human precision-grip movements. J. Neurophysiol. 94(4), 2284–2294 (2005)CrossRefGoogle Scholar
  4. 4.
    Valero-Cuevas, F.J., Johanson, M.E., Towles, J.D.: Towards a realistic biomechanical model of the thumb: the choice of kinematic description may be more critical than the solution method or the variability/uncertainty of musculoskeletal parameters. J. Biomech. 36(7), 1019–1030 (2003)CrossRefGoogle Scholar
  5. 5.
    Giurintano, D., Hollister, A., Buford, W., Thompson, D., Myers, L.: A virtual five-link model of the thumb. Med. Eng. Phys. 17(4), 297–303 (1995)CrossRefGoogle Scholar
  6. 6.
    Bullock, I.M., Borràs, J., Dollar, A.M.: Assessing assumptions in kinematic hand models: a review. In: 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 139–146 (2012)Google Scholar
  7. 7.
    Griffin, W.B., Findley, R.P., Turner, M.L., Cutkosky, M.R.: Calibration and mapping of a human hand for dexterous telemanipulation. In: ASME IMECE 2000 Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, pp. 1–8 (2000)Google Scholar
  8. 8.
    Hollister, A., Giurintano, D.J., Buford, W.L., Myers, L.M., Novick, A.: The axes of rotation of the thumb interphalangeal and metacarpophalangeal joints. Clin. Orthop. Relat. Res. 320, 188–193 (1995)Google Scholar
  9. 9.
    Hollister, A., Buford, W.L., Myers, L.M., Giurintano, D.J., Novick, A.: The axes of rotation of the thumb carpometacarpal joint. J. Orthop. Res. 10(3), 454–460 (1992)CrossRefGoogle Scholar
  10. 10.
    Chang, L.Y., Matsuoka, Y.: A kinematic thumb model for the act hand. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1000–1005. IEEE (2006)Google Scholar
  11. 11.
    Chalon, M., Grebenstein, M., Wimböck, T., Hirzinger, G.: The thumb: guidelines for a robotic design. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5886–5893 (2010)Google Scholar
  12. 12.
    Chang, L.Y., Pollard, N.S.: Method for determining kinematic parameters of the in vivo thumb carpometacarpal joint. IEEE Trans. Biomed. Eng. 55(7), 1897–1906 (2008)CrossRefGoogle Scholar
  13. 13.
    Santos, V.J., Valero-Cuevas, F.J.: Reported anatomical variability naturally leads to multimodal distributions of Denavit-Hartenberg parameters for the human thumb. IEEE Trans. Biomed. Eng. 53(2), 155–163 (2006)CrossRefGoogle Scholar
  14. 14.
    Kaufman, K.R., An, K.N., Litchy, W.J., Cooney, W.P., Chao, E.Y.: In-vivo function of the thumb muscles. Clin. Biomech. 14(2), 141–150 (1999)CrossRefGoogle Scholar
  15. 15.
    Craig, J.J.: Introduction to Robotics: Mechanics and Control, vol. 3. Pearson Prentice Hall, Upper Saddle River (2005)Google Scholar
  16. 16.
    Smutz, W.P., Kongsayreepong, A., Hughes, R.E., Niebur, G., Cooney, W.P., An, K.N.: Mechanical advantage of the thumb muscles. J. Biomech. 31(6), 565–570 (1998)CrossRefGoogle Scholar
  17. 17.
    Neumann, D.A., Bielefeld, T.: The carpometacarpal joint of the thumb: stability, deformity, and therapeutic intervention. J. Orthop. Sports Phys. Ther. 33(7), 386–399 (2003)CrossRefGoogle Scholar
  18. 18.
    Ladd, A.L., Crisco, J.J., Hagert, E., Rose, J., Weiss, A.P.C.: The 2014 ABJS nicolas andry award: The puzzle of the thumb: mobility, stability, and demands in opposition. Clin. Orthop. Relat. Res. 472(12), 3605–3622 (2014)CrossRefGoogle Scholar
  19. 19.
    Feix, T., Romero, J., Ek, C.H., Schmiedmayer, H.B., Kragic, D.: A metric for comparing the anthropomorphic motion capability of artificial hands. IEEE Trans. Robot. 29(1), 82–93 (2013)CrossRefGoogle Scholar
  20. 20.
    Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms, vol. 16. John Wiley & Sons, Hoboken (2001)zbMATHGoogle Scholar
  21. 21.
    Nanayakkara, T., Watanabe, K., Kiguchi, K., Izumi, K.: Evolving a multiobjective obstacle avoidance skill of a seven-link manipulator subject to constraints. Int. J. Syst. Sci. 35(3), 167–178 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Nanayakkara, T., Kiguchi, K., Murakami, T., Watanabe, K., Izumi, K.: Skillful adaptation of a 7-dof manipulator to avoid moving obstacles in a teleoperated force control task. In: IEEE International Symposium on Industrial Electronics (ISIE), vol. 3, pp. 1982–1987 (2001)Google Scholar
  23. 23.
    Cooney, W.P., Lucca, M.J., Chao, E., Linscheid, R.: The kinesiology of the thumb trapeziometacarpal joint. J. Bone Joint Surg. 63(9), 1371–1381 (1981)Google Scholar
  24. 24.
    Tang, J., Zhang, X., Li, Z.M.: Operational and maximal workspace of the thumb. Ergonomics 51(7), 1109–1118 (2008)CrossRefGoogle Scholar
  25. 25.
    Li, Z.M., Tang, J.: Coordination of thumb joints during opposition. J. Biomech. 40(3), 502–510 (2007)CrossRefGoogle Scholar
  26. 26.
    Vigouroux, L., Domalain, M., Berton, E.: Comparison of tendon tensions estimated from two biomechanical models of the thumb. J. Biomech. 42(11), 1772–1777 (2009)CrossRefGoogle Scholar
  27. 27.
    Hollister, A., Giurintano, D.J.: Thumb movements, motions, and moments. J. Hand Ther. 8(2), 106–114 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Visakha Nanayakkara
    • 1
    Email author
  • Ahmad Ataka
    • 2
  • Demetrios Venetsanos
    • 1
  • Olga Duran
    • 1
  • Nikolaos Vitzilaios
    • 1
  • Thrishantha Nanayakkara
    • 2
  • M. Necip Sahinkaya
    • 1
  1. 1.School of Mechanical and Automotive EngineeringKingston University LondonLondonUK
  2. 2.Department of InformaticsKing’s College LondonLondonUK

Personalised recommendations