Skip to main content

Large Scale Lattice Boltzmann Simulation for the Coupling of Free and Porous Media Flow

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering (HPCSE 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9611))

Abstract

In this work, we investigate the interaction of free and porous media flow by large scale lattice Boltzmann simulations. We study the transport phenomena at the porous interface on multiple scales, i.e., we consider both, computationally generated pore-scale geometries and homogenized models at a macroscopic scale. The pore-scale results are compared to those obtained by using different transmission models. Two-domain approaches with sharp interface conditions, e.g., of Beavers–Joseph–Saffman type, as well as a single-domain approach with a porosity depending viscosity are taken into account. For the pore-scale simulations, we use a highly scalable scheme with a robust second order boundary handling. We comment on computational aspects of the pore-scale simulation and on how to generate pore-scale geometries. The two-domain approaches depend sensitively on the choice of the exact position of the interface, whereas a well-designed single-domain approach can lead to a significantly better recovery of the averaged pore-scale results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.rrze.fau.de/dienste/arbeiten-rechnen/hpc/systeme.

References

  1. Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems. Springer, Heidelberg (2011)

    Google Scholar 

  2. Alazmi, B., Vafai, K.: Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int. J. Heat Mass Transf. 44, 1735–1749 (2001)

    Article  MATH  Google Scholar 

  3. Nield, D., Kuznetsov, A.: The effect of a transition layer between a fluid and a porous medium: shear flow in a channel. Transp. Porous Media 78, 477–487 (2009)

    Article  Google Scholar 

  4. Le Bars, M., Worster, M.G.: Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification. J. Fluid Mech. 550, 149–173 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goyeau, B., Lhuillier, D., Gobin, D., et al.: Momentum transport at a fluid-porous interface. Int. J. Heat Mass Transf. 46, 4071–4081 (2003)

    Article  MATH  Google Scholar 

  6. Chandesris, M., Jamet, D.: Jump conditions and surface-excess quantities at a fluid/porous interface: a multi-scale approach. Transp. Porous Media 78, 419–438 (2009)

    Article  MathSciNet  Google Scholar 

  7. Goharzadeh, A., Khalili, A., Jørgensen, B.B.: Transition layer thickness at a fluid-porous interface. Phys. Fluids 17, 057102 (2005)

    Article  MATH  Google Scholar 

  8. Ghisalberti, M.: The three-dimensionality of obstructed shear flows. Environ. Fluid Mech. 10, 329–343 (2010)

    Article  Google Scholar 

  9. Morad, M., Khalili, A.: Transition layer thickness in a fluid-porous medium of multi-sized spherical beads. Exp. Fluids 46, 323–330 (2009)

    Article  Google Scholar 

  10. Pokrajac, D., Manes, C.: Velocity measurements of a free-surface turbulent flow penetrating a porous medium composed of uniform-size spheres. Transp. Porous Media 78, 367–383 (2009)

    Article  Google Scholar 

  11. Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  12. Nield, D., Bejan, A.: Convection in Porous Media. Springer, New York (2006)

    MATH  Google Scholar 

  13. Duman, T., Shavit, U.: An apparent interface location as a tool to solve the porous interface flow problem. Transp. Porous Media 78, 509–524 (2009)

    Article  Google Scholar 

  14. Baber, K., Mosthaf, K., Flemisch, B., Helmig, R., Müthing, S., Wohlmuth, B.: Numerical scheme for coupling two-phase compositional porous-media flow and one-phase compositional free flow. IMA J. Appl. Math. 6, 887–909 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mosthaf, K., Baber, K., Flemisch, B., Helmig, R., Leijnse, A., Rybak, I., Wohlmuth, B.: A new coupling concept for two-phase compositional porous media and single-phase compositional free flow. Water Resour. Res. 47, 1–19 (2011)

    Article  Google Scholar 

  16. Saffman, P.: On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50, 93–101 (1971)

    Article  MATH  Google Scholar 

  17. Ochoa-Tapia, J., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid – II. Comparison with experiment. Int. J. Heat Mass Transf. 38, 2647–2655 (1995)

    Article  MATH  Google Scholar 

  18. Martys, N., Bentz, D.P., Garboczi, E.J.: Computer simulation study of the effective viscosity in Brinkman’s equation. Phys. Fluids 6, 1434–1439 (1994)

    Article  MATH  Google Scholar 

  19. Lundgren, T.S.: Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mech. 51, 273–299 (1972)

    Article  MATH  Google Scholar 

  20. Zhang, Q., Prosperetti, A.: Pressure-driven flow in a two-dimensional channel with porous walls. J. Fluid Mech. 631, 1–21 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nabovati, A., Amon, C.: Hydrodynamic boundary condition at open-porous interface: a pore-level lattice Boltzmann study. Transp. Porous Media 96, 83–95 (2013)

    Article  Google Scholar 

  22. Liu, Q., Prosperetti, A.: Pressure-driven flow in a channel with porous walls. J. Fluid Mech. 679, 77–100 (2011)

    Article  MATH  Google Scholar 

  23. Preclik, T., Rüde, U.: Ultrascale simulations of non-smooth granular dynamics. Comput. Part. Mech. 1–24 (2015)

    Google Scholar 

  24. Feichtinger, C., Götz, J., Donath, S., Iglberger, K., Rüde, U.: Walberla: exploiting massively parallel systems for lattice Boltzmann simulations. In: Trobec, R., Vajteršic, M., Zinterhof, P. (eds.) Parallel Computing, pp. 241–260. Springer, London (2009)

    Chapter  Google Scholar 

  25. Rong, L.W., Dong, K.J., Yu, A.B.: Lattice-Boltzmann simulation of fluid flow through packed beds of spheres: effect of particle size distribution. Chem. Eng. Sci. 116, 508–523 (2014)

    Article  Google Scholar 

  26. Beetstra, R., van der Hoef, M.A., Kuipers, J.A.M.: TA Lattice-Boltzmann simulation study of the drag coefficient of clusters of spheres. Comput. Fluids 35, 966–970 (2006)

    Article  MATH  Google Scholar 

  27. Succi, S., Foti, E., Higuera, F.: Three-dimensional flows in complex geometries with the lattice Boltzmann method. EPL (Europhys. Lett.) 10, 433 (1989)

    Article  Google Scholar 

  28. Singh, M., Mohanty, K.: Permeability of spatially correlated porous media. Chem. Eng. Sci. 55, 5393–5403 (2000)

    Article  Google Scholar 

  29. Bernsdorf, J., Brenner, G., Durst, F.: Numerical analysis of the pressure drop in porous media flow with lattice Boltzmann (BGK) automata. Comput. Phys. Commun. 129, 247–255 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kim, J., Lee, J., Lee, K.C.: Nonlinear correction to Darcy’s law for a flow through periodic arrays of elliptic cylinders. Physica A: Stat. Mech. Appl. 293, 13–20 (2001)

    Article  MATH  Google Scholar 

  31. Spaid, M.A.A., Phelan, F.R.: Lattice Boltzmann methods for modeling microscale flow in fibrous porous media. Phys. Fluids 9, 2468–2474 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Freed, D.M.: Lattice-Boltzmann method for macroscopic porous media modeling. Int. J. Mod. Phys. C 09, 1491–1503 (1998)

    Article  Google Scholar 

  33. Martys, N.S.: Improved approximation of the Brinkman equation using a lattice Boltzmann method. Phys. Fluids 13, 1807–1810 (2001)

    Article  MATH  Google Scholar 

  34. Nithiarasu, P., Seetharamu, K., Sundararajan, T.: Natural convective heat transfer in a fluid saturated variable porosity medium. Int. J. Heat Mass Transf. 40, 3955–3967 (1997)

    Article  MATH  Google Scholar 

  35. Guo, Z., Zhao, T.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66, 036304 (2002)

    Article  Google Scholar 

  36. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    Article  MATH  Google Scholar 

  37. Pan, C., Luo, L.S., Miller, C.T.: An evaluation of lattice Boltzmann schemes for porous medium flow simulation. Comput. Fluids 35, 898–909 (2006)

    Article  MATH  Google Scholar 

  38. Bogner, S., Mohanty, S., Rüde, U.: Drag correlation for dilute and moderately dense fluid-particle systems using the lattice Boltzmann method. Int. J. Multiph. Flow 68, 71–79 (2015)

    Article  MathSciNet  Google Scholar 

  39. Ginzburg, I.: Lattice Boltzmann modeling with discontinuous collision components: hydrodynamic and advection-diffusion equations. J. Stat. Phys. 126, 157–206 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ginzburg, I., Verhaeghe, F., d’Humieres, D.: Two-relaxation-time lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions. Commun. Comput. Phys. 3, 427–478 (2008)

    MathSciNet  Google Scholar 

  41. Ginzburg, I., Verhaeghe, F., d’Humières, D.: Study of simple hydrodynamic solutions with the two-relaxation-times lattice-Boltzmann scheme. Commun. Comput. Phys. 3, 519–581 (2008)

    MathSciNet  Google Scholar 

  42. He, X., Luo, L.S.: Lattice Boltzmann model for the incompressible Navier-Stokes equation. J. Stat. Phys. 88, 927–944 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  43. Khirevich, S., Ginzburg, I., Tallarek, U.: Coarse- and fine-grid numerical behavior of MRT/TRT lattice Boltzmann schemes in regular and random sphere packings. J. Comput. Phys. 281, 708–742 (2015)

    Article  MathSciNet  Google Scholar 

  44. Feichtinger, C., Donath, S., Köstler, H., Götz, J., Rüde, U.: WaLBerla: HPC software design for computational engineering simulations. J. Comput. Sci. 2, 105–112 (2011)

    Article  Google Scholar 

  45. Godenschwager, C., Schornbaum, F., Bauer, M., Köstler, H., Rüde, U.: A framework for hybrid parallel flow simulations with a trillion cells in complex geometries. In: Proceedings of SC13: International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2013, NY, USA, pp. 35:1–35:12. ACM, New York (2013)

    Google Scholar 

  46. Peters, A., Melchionna, S., Kaxiras, E., Lätt, J., Sircar, J., Bernaschi, M., Bison, M., Succi, S.: Multiscale simulation of cardiovascular flows on the IBM Bluegene/P: full heart-circulation system at red-blood cell resolution. In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–10. IEEE Computer Society (2010)

    Google Scholar 

  47. Schönherr, M., Kucher, K., Geier, M., Stiebler, M., Freudiger, S., Krafczyk, M.: Multi-thread implementations of the lattice Boltzmann method on non-uniform grids for CPUs and GPUs. Comput. Math. Appl. 61, 3730–3743 (2011)

    Article  Google Scholar 

  48. Robertsen, F., Westerholm, J., Mattila, K.: Lattice Boltzmann simulations at petascale on multi-GPU systems with asynchronous data transfer and strictly enforced memory read alignment. In: 23rd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 604–609 (2015)

    Google Scholar 

Download references

Acknowledgement

Financial support from the German Research Foundation (DFG, Project WO 671/11-1) and also the International Graduate School of Science and Engineering (IGSSE) of the Technische Universität München for research training group 6.03 are gratefully acknowledged. Our special thank goes to Regina Ammer for fruitful discussions and the waLBerla primary authors Florian Schornbaum, Christian Godenschwager and Martin Bauer for their essential help with implementing the code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Rüde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Fattahi, E., Waluga, C., Wohlmuth, B., Rüde, U. (2016). Large Scale Lattice Boltzmann Simulation for the Coupling of Free and Porous Media Flow. In: Kozubek, T., Blaheta, R., Šístek, J., Rozložník, M., Čermák, M. (eds) High Performance Computing in Science and Engineering. HPCSE 2015. Lecture Notes in Computer Science(), vol 9611. Springer, Cham. https://doi.org/10.1007/978-3-319-40361-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40361-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40360-1

  • Online ISBN: 978-3-319-40361-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics