Effect of Heuristics on Serendipity in Path-Based Storytelling with Linked Data

  • Laurens De VochtEmail author
  • Christian Beecks
  • Ruben Verborgh
  • Erik Mannens
  • Thomas Seidl
  • Rik Van de Walle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9734)


Path-based storytelling with Linked Data on the Web provides users the ability to discover concepts in an entertaining and educational way. Given a query context, many state-of-the-art pathfinding approaches aim at telling a story that coincides with the user’s expectations by investigating paths over Linked Data on the Web. By taking into account serendipity in storytelling, we aim at improving and tailoring existing approaches towards better fitting user expectations so that users are able to discover interesting knowledge without feeling unsure or even lost in the story facts. To this end, we propose to optimize the link estimation between - and the selection of facts in a story by increasing the consistency and relevancy of links between facts through additional domain delineation and refinement steps. In order to address multiple aspects of serendipity, we propose and investigate combinations of weights and heuristics in paths forming the essential building blocks for each story. Our experimental findings with stories based on DBpedia indicate the improvements when applying the optimized algorithm.


Storytelling Serendipity Pathfinding A* Linked data Heuristics 


  1. 1.
    Aizawa, A.: An information-theoretic perspective of Tf-idf measures. Inf. Process. Manag. 39(1), 45–65 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aleman-Meza, B., Halaschek, C., Arpinar, I.B., Sheth, A.P.: Context-aware semantic association ranking (2003)Google Scholar
  3. 3.
    Aleman-Meza, B., Halaschek-Weiner, C., Arpinar, I.B., Ramakrishnan, C., Sheth, A.P.: Ranking complex relationships on the semantic web. IEEE Internet Comput. 9(3), 37–44 (2005)CrossRefGoogle Scholar
  4. 4.
    Anyanwu, K., Maduko, A., Sheth, A.: Semrank: ranking complex relationship search results on the semantic web. In: Proceedings of the 14th International Conference on World Wide Web, pp. 117–127. ACM (2005)Google Scholar
  5. 5.
    Cheng, G., Zhang, Y., Qu, Y.: Explass: exploring associations between entities via top-k ontological patterns and facets. In: Mika, P., et al. (eds.) ISWC 2014, Part II. LNCS, vol. 8797, pp. 422–437. Springer, Heidelberg (2014)Google Scholar
  6. 6.
    Cilibrasi, R.L., Vitanyi, P.M.: The google similarity distance. IEEE Trans. Knowl. Data Eng. 19(3), 370–383 (2007)CrossRefGoogle Scholar
  7. 7.
    De Meester, B., De Nies, T., De Vocht, L., Verborgh, R., Mannens, E., Van de Walle, R.: StoryBlink: a semantic web approach for linking stories. In: Proceedings of the 14th International Semantic Web Conference (ISWC) Posters and Demonstrations Track (2015)Google Scholar
  8. 8.
    De Vocht, L., Beecks, C., Verborgh, R., Seidl, T., Mannens, E., Van de Walle, R.: Improving semantic relatedness in paths for storytelling with linked data on the web. In: Gandon, F., Guéret, C., Villata, S., Breslin, J., Faron-Zucker, C., Zimmermann, A. (eds.) The Semantic Web: ESWC 2015 Satellite Events. LNCS, vol. 9341, pp. 31–35. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  9. 9.
    De Vocht, L., Coppens, S., Verborgh, R., Vander Sande, M., Mannens, E., Van de Walle, R.: Discovering meaningful connections between resources in the web of data. In: Proceedings of the 6th Workshop on Linked Data on the Web (LDOW2013) (2013)Google Scholar
  10. 10.
    Fang, L., Sarma, A.D., Yu, C., Bohannon, P.: Rex: explaining relationships between entity pairs. Proc. VLDB Endow. 5(3), 241–252 (2011)CrossRefGoogle Scholar
  11. 11.
    Foster, A., Ford, N.: Serendipity and information seeking: an empirical study. J. Doc. 59(3), 321–340 (2003)CrossRefGoogle Scholar
  12. 12.
    Franzoni, V., Mencacci, M., Mengoni, P., Milani, A.: Heuristics for semantic path search in Wikipedia. In: Murgante, B., et al. (eds.) ICCSA 2014, Part VI. LNCS, vol. 8584, pp. 327–340. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Godin, F., De Nies, T., Beecks, C., De Vocht, L., De Neve, W., Mannens, E., Seidl, T., de Walle, R.V.: The normalized freebase distance. In: Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis, I., Tordai, A. (eds.) ESWC Satellite Events 2014. LNCS, vol. 8798, pp. 218–221. Springer, Heidelberg (2014)Google Scholar
  14. 14.
    Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4, 100–107 (1968)CrossRefGoogle Scholar
  15. 15.
    Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxonomy (1997). arXiv preprint arXiv:cmp-lg/9709008
  16. 16.
    Kumar, D., Ramakrishnan, N., Helm, R.F., Potts, M.: Algorithms for storytelling. IEEE Trans. Knowl. Data Eng. 20(6), 736–751 (2008)CrossRefGoogle Scholar
  17. 17.
    Mazuel, L., Sabouret, N.: Semantic relatedness measure using object properties in an ontology. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 681–694. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Moore, J.L., Steinke, F., Tresp, V.: A novel metric for information retrieval in semantic networks. In: Proceedings of 3rd International Workshop on Inductive Reasoning and Machine Learning for the Semantic Web (IRMLeS 2011), Heraklion, Greece, May 2011Google Scholar
  19. 19.
    Nies, T.D., Beecks, C., Godin, F., Neve, W.D., Stepien, G., Arndt, D., Vocht, L.D., Verborgh, R., Seidl, T., Mannens, E., de Walle, R.V.: A distance-based approach for semantic dissimilarity in knowledge graphs. In: Proceedings of the 10th International Conference on Semantic Computing (2016, accepted)Google Scholar
  20. 20.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web (1999)Google Scholar
  21. 21.
    Vander Sande, M., Verborgh, R., Coppens, S., De Nies, T., Debevere, P., De Vocht, L., De Potter, P., Van Deursen, D., Mannens, E., Van de Walle, R.: Everything is connected: using linked data for multimedia narration of connections between concepts. In: Proceedings of the 11th International Semantic Web Conference Posters and Demo Track, November 2012Google Scholar
  22. 22.
    Verborgh, R., et al.: Querying datasets on the web with high availability. In: Mika, P., et al. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 180–196. Springer, Heidelberg (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Laurens De Vocht
    • 1
    Email author
  • Christian Beecks
    • 2
  • Ruben Verborgh
    • 1
  • Erik Mannens
    • 1
  • Thomas Seidl
    • 2
  • Rik Van de Walle
    • 1
  1. 1.Department of Electronics and Information SystemsGhent University - iMindsGhentBelgium
  2. 2.Data Management and Data Exploration GroupRWTH Aachen UniversityAachenGermany

Personalised recommendations