Skip to main content

Identification and Roles of Zebrafish Histamine Receptors

  • Chapter
  • First Online:
Book cover Histamine Receptors

Part of the book series: The Receptors ((REC,volume 28))

  • 1019 Accesses

Abstract

Zebrafish, a small vertebrate model organism, has become a widely used tool in neuroscience. We describe the methods for genome modification and translation inhibition to produce new models. The brain histaminergic system comprises neurons in the hypothalamus and histamine receptors hrh1-hrh3, which are concentrated in specific brain regions. Their roles can be studied with several quantitative individual and social behavioral methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haffter P, et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development. 1996;123:1.

    Article  CAS  PubMed  Google Scholar 

  2. Fetcho JR, Liu KS. Zebrafish as a model system for studying neuronal circuits and behavior. Ann N Y Acad Sci. 1998;860:333.

    Article  CAS  PubMed  Google Scholar 

  3. Machluf Y, Gutnick A, Levkowitz G. Development of the zebrafish hypothalamus. Ann N Y Acad Sci. 2011;1220:93.

    Article  PubMed  Google Scholar 

  4. Ahrens MB, et al. Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature. 2012;485:471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Douglass AD, Kraves S, Deisseroth K, Schier AF, Engert F. Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons. Curr Biol. 2008;18:1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Naumann EA, Kampff AR, Prober DA, Schier AF, Engert F. Monitoring neural activity with bioluminescence during natural behavior. Nat Neurosci. 2010;13:513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Orger MB, Kampff AR, Severi KE, Bollmann JH, Engert F. Control of visually guided behavior by distinct populations of spinal projection neurons. Nat Neurosci. 2008;11:327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Burgess HA, Granato M. Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol. 2007;210:2526.

    Article  PubMed  Google Scholar 

  9. Burgess HA, Granato M. Sensorimotor gating in larval zebrafish. J Neurosci. 2007;27:4984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burgess HA, Johnson SL, Granato M. Unidirectional startle responses and disrupted left-right co-ordination of motor behaviors in robo3 mutant zebrafish. Genes Brain Behav. 2009;8(500).

    Article  CAS  Google Scholar 

  11. Burgess HA, Schoch H, Granato M. Distinct retinal pathways drive spatial orientation behaviors in zebrafish navigation. Curr Biol. 2010;20:381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Budick SA, O’Malley DM. Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. J Exp Biol. 2000;203:2565.

    Article  CAS  PubMed  Google Scholar 

  13. Fetcho JR, O’Malley DM. Visualization of active neural circuitry in the spinal cord of intact zebrafish. J Neurophysiol. 1995;73:399.

    Article  CAS  PubMed  Google Scholar 

  14. McElligott MB, O’Malley DM. Prey tracking by larval zebrafish: axial kinematics and visual control. Brain Behav Evol. 2005;66(177).

    Article  PubMed  Google Scholar 

  15. O’Malley DM, Kao YH, Fetcho JR. Imaging the functional organization of zebrafish hindbrain segments during escape behaviors. Neuron. 1996;17:1145.

    Article  PubMed  Google Scholar 

  16. Baier H, Rotter S, Korsching S. Connectional topography in the zebrafish olfactory system: random positions but regular spacing of sensory neurons projecting to an individual glomerulus. Proc Natl Acad Sci U S A. 1994;91:11646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bandmann O, Burton EA. Genetic zebrafish models of neurodegenerative diseases. Neurobiol Dis. 2010;40:58.

    Article  CAS  PubMed  Google Scholar 

  18. Friedrich RW. Calcium imaging in the intact olfactory system of zebrafish and mouse. Cold Spring Harb Protoc. 2014;2014:310.

    Article  PubMed  Google Scholar 

  19. Friedrich RW, Korsching SI. Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron. 1997;18:737.

    Article  CAS  PubMed  Google Scholar 

  20. Gabriel JP, Trivedi CA, Maurer CM, Ryu S, Bollmann JH. Layer-specific targeting of direction-selective neurons in the zebrafish optic tectum. Neuron. 2012;76:1147.

    Article  CAS  PubMed  Google Scholar 

  21. Kaslin J, Panula P. Comparative anatomy of the histaminergic and other aminergic systems in zebrafish (Danio rerio). J Comp Neurol. 2001;440:342.

    Article  CAS  PubMed  Google Scholar 

  22. Panula P, et al. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol Dis. 2010;40:46.

    Article  CAS  PubMed  Google Scholar 

  23. McLean DL, Fetcho JR. Using imaging and genetics in zebrafish to study developing spinal circuits in vivo. Dev Neurobiol. 2008;68:817.

    Article  PubMed  PubMed Central  Google Scholar 

  24. McLean DL, Fetcho JR. Relationship of tyrosine hydroxylase and serotonin immunoreactivity to sensorimotor circuitry in larval zebrafish. J Comp Neurol. 2004;480:57.

    Article  PubMed  Google Scholar 

  25. Ono F, Higashijima S, Shcherbatko A, Fetcho JR, Brehm P. Paralytic zebrafish lacking acetylcholine receptors fail to localize rapsyn clusters to the synapse. J Neurosci. 2001;21:5439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Leimer U, et al. Zebrafish (Danio rerio) presenilin promotes aberrant amyloid beta-peptide production and requires a critical aspartate residue for its function in amyloidogenesis. Biochemistry. 1999;38:13602.

    Article  CAS  PubMed  Google Scholar 

  27. Sallinen V, et al. Hyperserotonergic phenotype after monoamine oxidase inhibition in larval zebrafish. J Neurochem. 2009;109:403.

    Article  CAS  PubMed  Google Scholar 

  28. Sallinen V, et al. MPTP and MPP+ target specific aminergic cell populations in larval zebrafish. J Neurochem. 2009;108:719.

    Article  CAS  PubMed  Google Scholar 

  29. Sundvik M, Chen YC, Panula P. Presenilin1 regulates histamine neuron development and behavior in zebrafish, danio rerio. J Neurosci. 2013;33:1589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sallinen V, et al. Dopaminergic cell damage and vulnerability to MPTP in Pink1 knockdown zebrafish. Neurobiol Dis. 2010;40:93.

    Article  CAS  PubMed  Google Scholar 

  31. Nieuwenhuys R, ten Donkelar HJ, Nicholson C. The central nervous system of vertebrates. Berlin: Springer; 1998.

    Book  Google Scholar 

  32. Striedter GF. Principles of brain evolution. Sunderland: Sinauer Associates; 2005.

    Google Scholar 

  33. Panula P, et al. Modulatory neurotransmitter systems and behavior: towards zebrafish models of neurodegenerative diseases. Zebrafish. 2006;3:235.

    Article  CAS  PubMed  Google Scholar 

  34. Eriksson KS, Peitsaro N, Karlstedt K, Kaslin J, Panula P. Development of the histaminergic neurons and expression of histidine decarboxylase mRNA in the zebrafish brain in the absence of all peripheral histaminergic systems. Eur J Neurosci. 1998;10:3799.

    Article  CAS  PubMed  Google Scholar 

  35. Sundvik M, et al. The histaminergic system regulates wakefulness and orexin/hypocretin neuron development via histamine receptor H1 in zebrafish. FASEB J. 2011;25(12):4338–47.

    Article  CAS  PubMed  Google Scholar 

  36. Campion D, et al. Mutations of the presenilin I gene in families with early-onset Alzheimer’s disease. Hum Mol Genet. 1995;4:2373.

    Article  CAS  PubMed  Google Scholar 

  37. Borchelt DR, et al. Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron. 1996;17:1005.

    Article  CAS  PubMed  Google Scholar 

  38. McLean DL, Fetcho JR. Ontogeny and innervation patterns of dopaminergic, noradrenergic, and serotonergic neurons in larval zebrafish. J Comp Neurol. 2004;480:38.

    Article  PubMed  Google Scholar 

  39. Rink E, Wullimann MF. Connections of the ventral telencephalon (subpallium) in the zebrafish (Danio rerio). Brain Res. 2004;1011:206.

    Article  CAS  PubMed  Google Scholar 

  40. Rink E, Wullimann MF. The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Res. 2001;889:316.

    Article  CAS  PubMed  Google Scholar 

  41. Ryu S, et al. Orthopedia homeodomain protein is essential for diencephalic dopaminergic neuron development. Curr Biol. 2007;17:873.

    Article  CAS  PubMed  Google Scholar 

  42. Scharer YP, Shum J, Moressis A, Friedrich RW. Dopaminergic modulation of synaptic transmission and neuronal activity patterns in the zebrafish homolog of olfactory cortex. Front Neural Circuits. 2012;6:76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thirumalai V, Cline HT. Endogenous dopamine suppresses initiation of swimming in prefeeding zebrafish larvae. J Neurophysiol. 2008;100:1635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Summerton J, Weller D. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev. 1997;7:187.

    Article  CAS  PubMed  Google Scholar 

  45. Bill BR, Petzold AM, Clark KJ, Schimmenti LA, Ekker SC. A primer for morpholino use in zebrafish. Zebrafish. 2009;6:69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kok FO, et al. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell. 2015;32:97.

    Article  CAS  PubMed  Google Scholar 

  47. Rossi A, et al. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature. 2015;524:230.

    Article  CAS  PubMed  Google Scholar 

  48. Robu ME, et al. p53 activation by knockdown technologies. PLoS Genet. 2007;3, e78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Eisen JS, Smith JC. Controlling morpholino experiments: don’t stop making antisense. Development. 2008;135:1735.

    Article  CAS  PubMed  Google Scholar 

  50. Podlasz P, et al. Galanin gene expression and effects of its knock-down on the development of the nervous system in larval zebrafish. J Comp Neurol. 2012;520:3846.

    Article  CAS  PubMed  Google Scholar 

  51. Chen YC, Priyadarshini M, Panula P. Complementary developmental expression of the two tyrosine hydroxylase transcripts in zebrafish. Histochem Cell Biol. 2009;132:375.

    Article  CAS  PubMed  Google Scholar 

  52. Beerli RR, Barbas 3rd CF. Engineering polydactyl zinc-finger transcription factors. Nat Biotechnol. 2002;20:135.

    Article  CAS  PubMed  Google Scholar 

  53. Boch J, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326:1509.

    Article  CAS  PubMed  Google Scholar 

  54. Hwang WY, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013;31:227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gonzales AP, Yeh JR. Cas9-based genome editing in zebrafish. Methods Enzymol. 2014;546:377.

    Article  CAS  PubMed  Google Scholar 

  56. Cho SW, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014;24:132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ablain J, Durand EM, Yang S, Zhou Y, Zon LI. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev Cell. 2015;32:756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Eaton RC, Farley RD, Kimmel CB, Schabtach E. Functional development in the Mauthner cell system of embryos and larvae of the zebra fish. J Neurobiol. 1977;8:151.

    Article  CAS  PubMed  Google Scholar 

  59. Saint-Amant L, Drapeau P. Synchronization of an embryonic network of identified spinal interneurons solely by electrical coupling. Neuron. 2001;31:1035.

    Article  CAS  PubMed  Google Scholar 

  60. Saint-Amant L, Drapeau P. Motoneuron activity patterns related to the earliest behavior of the zebrafish embryo. J Neurosci. 2000;20:3964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Saint-Amant L, Drapeau P. Time course of the development of motor behaviors in the zebrafish embryo. J Neurobiol. 1998;37:622.

    Article  CAS  PubMed  Google Scholar 

  62. Larson ET, O’Malley DM, Melloni Jr RH. Aggression and vasotocin are associated with dominant-subordinate relationships in zebrafish. Behav Brain Res. 2006;167:94.

    Article  CAS  PubMed  Google Scholar 

  63. Perez-Escudero A, Vicente-Page J, Hinz RC, Arganda S, de Polavieja GG. idTracker: tracking individuals in a group by automatic identification of unmarked animals. Nat Methods. 2014;11:743.

    Article  CAS  PubMed  Google Scholar 

  64. Pavlidis M, Sundvik M, Chen YC, Panula P. Adaptive changes in zebrafish brain in dominant-subordinate behavioral context. Behav Brain Res. 2011;225(2):529–37.

    Article  CAS  PubMed  Google Scholar 

  65. Levin ED, Cerutti DT. Behavioral neuroscience of zebrafish. In: Buccafusco JJ, editor. Cerutti methods of behavior analysis in neuroscience. Boca Raton: CRC Press/Taylor & Francis; 2009.

    Google Scholar 

  66. Peitsaro N, Kaslin J, Anichtchik OV, Panula P. Modulation of the histaminergic system and behaviour by alpha-fluoromethylhistidine in zebrafish. J Neurochem. 2003;86:432.

    Article  CAS  PubMed  Google Scholar 

  67. Vitebsky A, Reyes R, Sanderson MJ, Michel WC, Whitlock KE. Isolation and characterization of the laure olfactory behavioral mutant in the zebrafish, Danio rerio. Dev Dyn. 2005;234:229.

    Article  CAS  PubMed  Google Scholar 

  68. Zhdanova IV. Sleep in zebrafish. Zebrafish. 2006;3:215.

    Article  CAS  PubMed  Google Scholar 

  69. Prober DA, Rihel J, Onah AA, Sung RJ, Schier AF. Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. J Neurosci. 2006;26:13400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Brockerhoff SE, et al. A behavioral screen for isolating zebrafish mutants with visual system defects. Proc Natl Acad Sci U S A. 1995;92:10545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Neuhauss SC, et al. Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. J Neurosci. 1999;19:8603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Darland T, Dowling JE. Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad Sci U S A. 2001;98:11691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Giacomini NJ, Rose B, Kobayashi K, Guo S. Antipsychotics produce locomotor impairment in larval zebrafish. Neurotoxicol Teratol. 2006;28:245.

    Article  CAS  PubMed  Google Scholar 

  74. Rihel J, et al. Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science. 2010;327:348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. MacRae CA, Peterson RT. Zebrafish as tools for drug discovery. Nat Rev Drug Discov. 2015;14:721.

    Article  CAS  PubMed  Google Scholar 

  76. Peitsaro N, Sundvik M, Anichtchik OV, Kaslin J, Panula P. Identification of zebrafish histamine H1, H2 and H3 receptors and effects of histaminergic ligands on behavior. Biochem Pharmacol. 2007;73:1205.

    Article  CAS  PubMed  Google Scholar 

  77. Fredriksson R, Schioth HB. The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol Pharmacol. 2005;67:1414.

    Article  CAS  PubMed  Google Scholar 

  78. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol. 2003;63:1256.

    Article  CAS  PubMed  Google Scholar 

  79. Zozulya S, Echeverri F, Nguyen T. The human olfactory receptor repertoire. Genome Biol. 2001;2:RESEARCH0018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ruuskanen JO, Peitsaro N, Kaslin JV, Panula P, Scheinin M. Expression and function of alpha-adrenoceptors in zebrafish: drug effects, mRNA and receptor distributions. J Neurochem. 2005;94:1559.

    Article  CAS  PubMed  Google Scholar 

  81. Sokoloff P, Schwartz JC. Novel dopamine receptors half a decade later. Trends Pharmacol Sci. 1995;16:270.

    Article  CAS  PubMed  Google Scholar 

  82. Yamamoto K, et al. Evolution of dopamine receptor genes of the D1 class in vertebrates. Mol Biol Evol. 2013;30:833.

    Article  CAS  PubMed  Google Scholar 

  83. Boehmler W, et al. D4 Dopamine receptor genes of zebrafish and effects of the antipsychotic clozapine on larval swimming behaviour. Genes Brain Behav. 2007;6:155.

    Article  CAS  PubMed  Google Scholar 

  84. Boehmler W, et al. Evolution and expression of D2 and D3 dopamine receptor genes in zebrafish. Dev Dyn. 2004;230:481.

    Article  CAS  PubMed  Google Scholar 

  85. McCorvy JD, Roth BL. Structure and function of serotonin G protein-coupled receptors. Pharmacol Ther. 2015;150:129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Norton WH, Folchert A, Bally-Cuif L. Comparative analysis of serotonin receptor (HTR1A/HTR1B families) and transporter (slc6a4a/b) gene expression in the zebrafish brain. J Comp Neurol. 2008;511:521.

    Article  CAS  PubMed  Google Scholar 

  87. Schneider H, et al. Cloning and expression of a zebrafish 5-HT(2C) receptor gene. Gene. 2012;502:108.

    Article  CAS  PubMed  Google Scholar 

  88. Peitsaro N, Anichtchik OV, Panula P. Identification of a histamine H(3)-like receptor in the zebrafish (Danio rerio) brain. J Neurochem. 2000;75:718.

    Article  CAS  PubMed  Google Scholar 

  89. Panula P, et al. International union of basic and clinical pharmacology. XCVIII histamine receptors. Pharmacol Rev. 2015;67:601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Howe K, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496:498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Postlethwait J, Amores A, Force A, Yan YL. The zebrafish genome. Methods Cell Biol. 1999;60:149.

    Article  CAS  PubMed  Google Scholar 

  92. Woods IG, et al. A comparative map of the zebrafish genome. Genome Res. 2000;10:1903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Catchen JM, Braasch I, Postlethwait JH. Conserved synteny and the zebrafish genome. Methods Cell Biol. 2011;104:259.

    Article  CAS  PubMed  Google Scholar 

  94. Cresko WA, et al. Genome duplication, subfunction partitioning, and lineage divergence: Sox9 in stickleback and zebrafish. Dev Dyn. 2003;228:480.

    Article  CAS  PubMed  Google Scholar 

  95. Amores A, et al. Zebrafish hox clusters and vertebrate genome evolution. Science. 1998;282:1711.

    Article  CAS  PubMed  Google Scholar 

  96. Candy J, Collet C. Two tyrosine hydroxylase genes in teleosts. Biochim Biophys Acta. 2005;1727:35.

    Article  CAS  PubMed  Google Scholar 

  97. Semenova SA, Chen YC, Zhao X, Rauvala H, Panula P. The tyrosine hydroxylase 2 (TH2) system in zebrafish brain and stress activation of hypothalamic cells. Histochem Cell Biol. 2014;142:619.

    Article  CAS  PubMed  Google Scholar 

  98. Airaksinen MS, Panula P. The histaminergic system in the guinea pig central nervous system: an immunocytochemical mapping study using an antiserum against histamine. J Comp Neurol. 1988;273:163.

    Article  CAS  PubMed  Google Scholar 

  99. Panula P, Airaksinen MS, Pirvola U, Kotilainen E. A histamine-containing neuronal system in human brain. Neuroscience. 1990;34:127.

    Article  CAS  PubMed  Google Scholar 

  100. Panula P, et al. Histamine-immunoreactive nerve fibers in the mammalian spinal cord. Brain Res. 1989;484:234.

    Article  CAS  PubMed  Google Scholar 

  101. Panula P, Pirvola U, Auvinen S, Airaksinen MS. Histamine-immunoreactive nerve fibers in the rat brain. Neuroscience. 1989;28:585.

    Article  CAS  PubMed  Google Scholar 

  102. Lein ES, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445:168.

    Article  CAS  PubMed  Google Scholar 

  103. Jin CY, Panula P. The laminar histamine receptor system in human prefrontal cortex suggests multiple levels of histaminergic regulation. Neuroscience. 2005;132:137.

    Article  CAS  PubMed  Google Scholar 

  104. He M, Deng C, Huang XF. The role of hypothalamic H1 receptor antagonism in antipsychotic-induced weight gain. CNS Drugs. 2013;27:423.

    Article  CAS  PubMed  Google Scholar 

  105. Lin L, et al. Measurement of hypocretin/orexin content in the mouse brain using an enzyme immunoassay: the effect of circadian time, age and genetic background. Peptides. 2002;23:2203.

    Article  CAS  PubMed  Google Scholar 

  106. Dai H, et al. Selective cognitive dysfunction in mice lacking histamine H1 and H2 receptors. Neurosci Res. 2007;57:306.

    Article  CAS  PubMed  Google Scholar 

  107. Zlomuzica A, Ruocco LA, Sadile AG, Huston JP, Dere E. Histamine H1 receptor knockout mice exhibit impaired spatial memory in the eight-arm radial maze. Br J Pharmacol. 2009;157:86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jin C, Lintunen M, Panula P. Histamine H(1) and H(3) receptors in the rat thalamus and their modulation after systemic kainic acid administration. Exp Neurol. 2005;194:43.

    Article  CAS  PubMed  Google Scholar 

  109. Filby AL, Paull GC, Hickmore TF, Tyler CR. Unravelling the neurophysiological basis of aggression in a fish model. BMC Genomics. 2010;11:498.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Haas H, Panula P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci. 2003;4:121.

    Article  CAS  PubMed  Google Scholar 

  111. Meskanen K, et al. A randomized clinical trial of histamine 2 receptor antagonism in treatment-resistant schizophrenia. J Clin Psychopharmacol. 2013;33:472.

    Article  CAS  PubMed  Google Scholar 

  112. Arrang JM, Garbarg M, Schwartz JC. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature. 1983;302:832.

    Article  CAS  PubMed  Google Scholar 

  113. Nuutinen S, et al. Evidence for the role of histamine H3 receptor in alcohol consumption and alcohol reward in mice. Neuropsychopharmacology. 2011;36:2030–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Vanhanen J, Kinnunen M, Nuutinen S, Panula P. Histamine H3 receptor antagonist JNJ-39220675 modulates locomotor responses but not place conditioning by dopaminergic drugs. Psychopharmacology (Berl). 2015;232(1143).

    Article  PubMed  CAS  Google Scholar 

  115. Ferrada C, et al. Marked changes in signal transduction upon heteromerization of dopamine D1 and histamine H3 receptors. Br J Pharmacol. 2009;157:64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ferrada C, et al. Interactions between histamine H-3 and dopamine D-2 receptors and the implications for striatal function. Neuropharmacology. 2008;55:190.

    Article  CAS  PubMed  Google Scholar 

  117. Nuutinen S, Panula P. Histamine in neurotransmission and brain diseases. Adv Exp Med Biol. 2011;709:95.

    Article  Google Scholar 

  118. Dauvilliers Y, et al. Pitolisant versus placebo or modafinil in patients with narcolepsy: a double-blind, randomised trial. Lancet Neurol. 2013;12:1068.

    Article  CAS  PubMed  Google Scholar 

  119. Drutel G, et al. Identification of rat H3 receptor isoforms with different brain expression and signaling properties. Mol Pharmacol. 2001;59:1.

    Article  CAS  PubMed  Google Scholar 

  120. Bakker RA, et al. Discovery of naturally occurring splice variants of the rat histamine H3 receptor that act as dominant-negative isoforms. Mol Pharmacol. 2006;69:1194.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pertti Panula M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sundvik, M., Chen, YC., Puttonen, H., Panula, P. (2016). Identification and Roles of Zebrafish Histamine Receptors. In: Blandina, P., Passani, M. (eds) Histamine Receptors. The Receptors, vol 28. Humana, Cham. https://doi.org/10.1007/978-3-319-40308-3_4

Download citation

Publish with us

Policies and ethics