Skip to main content

Interaction of Brain Histaminergic and Dopaminergic Systems

  • Chapter
  • First Online:
  • 991 Accesses

Part of the book series: The Receptors ((REC,volume 28))

Abstract

Brain neurons containing the neurotransmitter dopamine have two well-characterized functions: they are key regulators of movements, and they mediate reward and motivation induced by natural rewards such as food and sex but also by drugs of abuse including nicotine, alcohol, and illegal drugs [1]. Dopamine neurons from the midbrain and histamine neurons from the posterolateral hypothalamus both send their axons to a brain area called the striatum which is the center for the control of movements, reward, and motivation. The striatum is divided into two subregions: the dorsal striatum which is classically referred to as the motor control region and the ventral striatum, including the nucleus accumbens, which regulates reward and motivation. Recent evidence shows however that the classical division of striatal functions is not that clear and, e.g., dorsal striatal areas have been shown to be involved in the regulation of reward too. The midbrain areas where dopaminergic neuron somas are located, substantia nigra and ventral tegmental area, also receive histaminergic projections [2, 3]. Of importance, the striatum expresses a high density of histamine H1–H3 receptors [4–6] suggesting that histamine can directly affect striatal function and basal ganglia output. The expression of the histamine H3 receptor in the striatum is exceptionally high [5–7]. H3 receptors are G protein-coupled receptors that regulate the release of histamine but also other neurotransmitter release (e.g., GABA, noradrenaline, acetylcholine, and possibly dopamine) [8]. Importantly, majority of the H3 receptors in the striatum are located postsynaptically at GABAergic medium spiny neurons [5, 6, 9], and there is evidence of a direct interaction between H3 and dopamine receptors in co-expressing culture systems [10–12] and in vivo [13].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Trudeau LE, Hnasko TS, Wallen-Mackenzie A, et al. The multilingual nature of dopamine neurons. Prog Brain Res. 2014;211:141–64. doi:10.1016/B978-0-444-63425-2.00006-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Airaksinen MS, Panula P. The histaminergic system in the guinea pig central nervous system: an immunocytochemical mapping study using an antiserum against histamine. J Comp Neurol. 1988;273(2):163–86. doi:10.1002/cne.902730204.

    Article  CAS  PubMed  Google Scholar 

  3. Takagi H, Morishima Y, Matsuyama T, et al. Histaminergic axons in the neostriatum and cerebral cortex of the rat: a correlated light and electron microscopic immunocytochemical study using histidine decarboxylase as a marker. Brain Res. 1986;364(1):114–23.

    CAS  PubMed  Google Scholar 

  4. Martinez-Mir MI, Pollard H, Moreau J, et al. Three histamine receptors (H1, H2 and H3) visualized in the brain of human and non-human primates. Brain Res. 1990;526(2):322–7.

    CAS  PubMed  Google Scholar 

  5. Pillot C, Heron A, Cochois V, et al. A detailed mapping of the histamine H(3) receptor and its gene transcripts in rat brain. Neuroscience. 2002;14(1):173–93.

    Google Scholar 

  6. Pillot C, Ortiz J, Heron A, et al. Ciproxifan, a histamine H3-receptor antagonist/inverse agonist, potentiates neurochemical and behavioral effects of haloperidol in the rat. J Neurosci. 2002;22(16):7272–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Panula P, Nuutinen S. The histaminergic network in the brain: basic organization and role in disease. Nat Rev Neurosci. 2013;14(7):472–87. doi:10.1038/nrn3526.

    Article  CAS  PubMed  Google Scholar 

  8. Ellenbroek BA. Histamine H(3) receptors, the complex interaction with dopamine and its implications for addiction. Br J Pharmacol. 2013;170(1):46–57. doi:10.1111/bph.12221.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Pillot C, Heron A, Schwartz JC, et al. Ciproxifan, a histamine H3-receptor antagonist/inverse agonist, modulates the effects of methamphetamine on neuropeptide mRNA expression in rat striatum. Eur J Neurosci. 2003;17(2):307–14.

    PubMed  Google Scholar 

  10. Ferrada C, Ferre S, Casado V, et al. Interactions between histamine H3 and dopamine D2 receptors and the implications for striatal function. Neuropharmacology. 2008;55(2):190–7. doi:10.1016/j.neuropharm.2008.05.008.

    Article  CAS  PubMed  Google Scholar 

  11. Ferrada C, Moreno E, Casado V, et al. Marked changes in signal transduction upon heteromerization of dopamine D1 and histamine H3 receptors. Br J Pharmacol. 2009;157(1):64–75. doi:10.1111/j.1476-5381.2009.00152.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moreno E, Moreno-Delgado D, Navarro G, et al. Cocaine disrupts histamine H3 receptor modulation of dopamine D1 receptor signaling: σ1-D1-H3 receptor complexes as key targets for reducing cocaine’s effects. J Neurosci. 2014;34(10):3545–58. doi:10.1523/JNEUROSCI.4147-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moreno E, Hoffmann H, Gonzalez-Sepulveda M, et al. Dopamine D1-histamine H3 receptor heteromers provide a selective link to the map-kinase signalling in gabaergic neurons of the direct striatal pathway. J Biol Chem. 2011;286:5846–54. doi:10.1074/jbc.M110.161489.

    Article  CAS  PubMed  Google Scholar 

  14. Nuutinen S, Karlstedt K, Aitta-Aho T, et al. Histamine and H3 receptor-dependent mechanisms regulate ethanol stimulation and conditioned place preference in mice. Psychopharmacology (Berl). 2010;208(1):75–86. doi:10.1007/s00213-009-1710-5.

    Article  CAS  Google Scholar 

  15. Nuutinen S, Lintunen M, Vanhanen J, et al. Evidence for the role of histamine H3 receptor in alcohol consumption and alcohol reward in mice. Neuropsychopharmacology. 2011;36(10):2030–40. doi:10.1038/npp.2011.90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nuutinen S, Maki T, Rozov S, et al. Histamine H3 receptor antagonist decreases cue-induced alcohol reinstatement in mice. Neuropharmacology. 2015;106:156–63. doi:10.1016/j.neuropharm.2015.06.006.

    CAS  PubMed  Google Scholar 

  17. Nuutinen S, Vanhanen J, Pigni MC, et al. Effects of histamine H3 receptor ligands on the rewarding, stimulant and motor-impairing effects of ethanol in DBA/2J mice. Neuropharmacology. 2011;60(7–8):1193–9. doi:10.1016/j.neuropharm.2010.10.027.

    Article  CAS  PubMed  Google Scholar 

  18. Panula P, Nuutinen S. Histamine and H3 receptor in alcohol-related behaviors. J Pharmacol Exp Ther. 2011;336(1):9–16. doi:10.1124/jpet.110.170928.

    Article  CAS  PubMed  Google Scholar 

  19. Vanhanen J, Nuutinen S, Lintunen M, et al. Histamine is required for H3 receptor-mediated alcohol reward inhibition, but not for alcohol consumption or stimulation. Br J Pharmacol. 2013;170(1):177–87. doi:10.1111/bph.12170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bolam JP, Ellender TJ. Histamine and the striatum. Neuropharmacology. 2015;106:74–84. doi:10.1016/j.neuropharm.2015.08.013.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bristow LJ, Bennett GW. Biphasic effects of intra-accumbens histamine administration on spontaneous motor activity in the rat; a role for central histamine receptors. Br J Pharmacol. 1988;95(4):1292–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chiavegatto S, Nasello AG, Bernardi MM. Histamine and spontaneous motor activity: biphasic changes, receptors involved and participation of the striatal dopamine system. Life Sci. 1998;62(20):1875–88.

    CAS  PubMed  Google Scholar 

  23. Kalivas PW. Histamine-induced arousal in the conscious and pentobarbital-pretreated rat. J Pharmacol Exp Ther. 1982;222(1):37–42.

    CAS  PubMed  Google Scholar 

  24. Alvarez EO. Banzan AM Further evidence that histamine in hippocampus affects the exploratory behavior in the rat. Physiol Behav. 1985;34(5):661–4.

    CAS  PubMed  Google Scholar 

  25. Inoue I, Yanai K, Kitamura D, et al. Impaired locomotor activity and exploratory behavior in mice lacking histamine H1 receptors. Proc Natl Acad Sci U S A. 1996;93(23):13316–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Alvarez EO, Banzan AM. Histamine in dorsal and ventral hippocampus. II. Effects of H1 and H2 histamine antagonists on exploratory behavior in male rats. Physiol Behav. 1986;37(1):39–45.

    CAS  PubMed  Google Scholar 

  27. Iwabuchi K, Kubota Y, Ito C, et al. Methamphetamine and brain histamine: a study using histamine-related gene knockout mice. Ann N Y Acad Sci. 2004;1025:129–34. doi:10.1196/annals.1316.016.

    Article  CAS  PubMed  Google Scholar 

  28. Brabant C, Charlier Y, Quertemont E, et al. The H3 antagonist thioperamide reveals conditioned preference for a context associated with an inactive small dose of cocaine in C57BL/6J mice. Behav Brain Res. 2005;160(1):161–8. doi:10.1016/j.bbr.2004.11.029.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang M, Ballard ME, Pan L, et al. Lack of cataleptogenic potentiation with non-imidazole H3 receptor antagonists reveals potential drug-drug interactions between imidazole-based H3 receptor antagonists and antipsychotic drugs. Brain Res. 2005;1045(1–2):142–9.

    CAS  PubMed  Google Scholar 

  30. Akhtar M, Uma Devi P, Ali A, et al. Antipsychotic-like profile of thioperamide, a selective H3-receptor antagonist in mice. Fundam Clin Pharmacol. 2006;20(4):373–8.

    CAS  PubMed  Google Scholar 

  31. Liu CQ, Chen Z, Liu FX, et al. Involvement of brain endogenous histamine in the degeneration of dopaminergic neurons in 6-hydroxydopamine-lesioned rats. Neuropharmacology. 2007;53(7):832–41.

    CAS  PubMed  Google Scholar 

  32. Liu CQ, Hu DN, Liu FX, et al. Apomorphine-induced turning behavior in 6-hydroxydopamine lesioned rats is increased by histidine and decreased by histidine decarboxylase, histamine H1 and H2 receptor antagonists, and an H3 receptor agonist. Pharmacol Biochem Behav. 2008;90(3):325–30. doi:10.1016/j.pbb.2008.03.010.

    Article  CAS  PubMed  Google Scholar 

  33. Garcia-Ramirez M, Aceves J, Arias-Montano JA. Intranigral injection of the H3 agonist immepip and systemic apomorphine elicit ipsilateral turning behaviour in naive rats, but reduce contralateral turning in hemiparkinsonian rats. Behav Brain Res. 2004;54(2):409–15. doi:10.1016/j.bbr.2004.03.007.

    Article  CAS  Google Scholar 

  34. Huotari M, Kukkonen K, Liikka N, et al. Effects of histamine H(3)-ligands on the levodopa-induced turning behavior of hemiparkinsonian rats. Parkinsonism Relat Disord. 2000;6(3):159–64.

    CAS  PubMed  Google Scholar 

  35. Nowak P, Bortel A, Dabrowska J, et al. Histamine H(3) receptor ligands modulate L-dopa-evoked behavioral responses and L-dopa derived extracellular dopamine in dopamine-denervated rat striatum. Neurotox Res. 2008;13(3–4):231–40.

    CAS  PubMed  Google Scholar 

  36. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217–38. doi:10.1038/npp.2009.110.

    Article  PubMed  Google Scholar 

  37. Cohn CK, Ball GG, Hirsch J. Histamine: effect on self-stimulation. Science. 1973;180(87):757–8.

    CAS  PubMed  Google Scholar 

  38. Suzuki T, Takamori K, Misawa M, et al. Effects of the histaminergic system on the morphine-induced conditioned place preference in mice. Brain Res. 1995;675(1–2):195–202.

    CAS  PubMed  Google Scholar 

  39. Masukawa Y, Suzuki T, Misawa M. Differential modification of the rewarding effects of methamphetamine and cocaine by opioids and antihistamines. Psychopharmacology (Berl). 1993;111(2):139–43.

    CAS  Google Scholar 

  40. Suzuki T, Mori T, Tsuji M, et al. Generalization of D-, L- and DL-chlorpheniramine and zolantidine to the discriminative stimulus effects of cocaine and methamphetamine. Behav Pharmacol. 1997;8(8):718–24.

    CAS  PubMed  Google Scholar 

  41. Takino N, Sakurai E, Kuramasu A, et al. Roles of the histaminergic neurotransmission on methamphetamine-induced locomotor sensitization and reward: a study of receptors gene knockout mice. Int Rev Neurobiol. 2009;85:109–16. doi:10.1016/S0074-7742(09)85008-3.

    Article  CAS  PubMed  Google Scholar 

  42. Okuda T, Ito Y, Nakagawa N, et al. Drug interaction between methamphetamine and antihistamines: behavioral changes and tissue concentrations of methamphetamine in rats. Eur J Pharmacol. 2004;505(1–3):135–44. doi:10.1016/j.ejphar.2004.10.022.

    Article  CAS  PubMed  Google Scholar 

  43. Brabant C, Alleva L, Grisar T, et al. Effects of the H3 receptor inverse agonist thioperamide on cocaine-induced locomotion in mice: role of the histaminergic system and potential pharmacokinetic interactions. Psychopharmacology (Berl). 2009;202(4):673–87. doi:10.1007/s00213-008-1345-y.

    Article  CAS  Google Scholar 

  44. Brabant C, Quertemont E, Anaclet C, et al. The psychostimulant and rewarding effects of cocaine in histidine decarboxylase knockout mice do not support the hypothesis of an inhibitory function of histamine on reward. Psychopharmacology (Berl). 2007;190(2):251–63. doi:10.1007/s00213-006-0603-0.

    Article  CAS  Google Scholar 

  45. Aquino-Miranda G, Escamilla-Sanchez J, Gonzalez-Pantoja R, et al. Histamine H receptor activation inhibits dopamine synthesis but not release or uptake in rat nucleus accumbens. Neuropharmacology. 2015;106:91–101. doi:10.1016/j.neuropharm.2015.07.006.

    CAS  PubMed  Google Scholar 

  46. Anichtchik OV, Huotari M, Peitsaro N, et al. Modulation of histamine H3 receptors in the brain of 6-hydroxydopamine-lesioned rats. Eur J Neurosci. 2000;12(11):3823–32.

    CAS  PubMed  Google Scholar 

  47. Anichtchik OV, Peitsaro N, Rinne JO, et al. Distribution and modulation of histamine H(3) receptors in basal ganglia and frontal cortex of healthy controls and patients with Parkinson’s disease. Neurobiol Dis. 2001;8(4):707–16. doi:10.1006/nbdi.2001.0413.

    Article  CAS  PubMed  Google Scholar 

  48. Anichtchik OV, Rinne JO, Kalimo H, et al. An altered histaminergic innervation of the substantia nigra in Parkinson’s disease. Exp Neurol. 2000;163(1):20–30. doi:10.1006/exnr.2000.7362.

    CAS  PubMed  Google Scholar 

  49. Gonzalez-Sepulveda M, Rosell S, Hoffmann HM, et al. Cellular distribution of the histamine H3 receptor in the basal ganglia: functional modulation of dopamine and glutamate neurotransmission. Basal Ganglia. 2013;3:109–21.

    Google Scholar 

  50. Onali P, Olianas MC. Involvement of adenylate cyclase inhibition in dopamine autoreceptor regulation of tyrosine hydroxylase in rat nucleus accumbens. Neurosci Lett. 1989;102(1):91–6.

    CAS  PubMed  Google Scholar 

  51. Molina-Hernandez A, Nunez A, Arias-Montano JA. Histamine H3-receptor activation inhibits dopamine synthesis in rat striatum. Neuroreport. 2000;11(1):163–6.

    CAS  PubMed  Google Scholar 

  52. Castellan Baldan L, Williams KA, Gallezot JD, et al. Histidine decarboxylase deficiency causes tourette syndrome: parallel findings in humans and mice. Neuron. 2014;81(1):77–90. doi:10.1016/j.neuron.2013.10.052.

    Article  CAS  Google Scholar 

  53. Rapanelli M, Pittenger C. Histamine and histamine receptors in Tourette syndrome and other neuropsychiatric conditions. Neuropharmacology. 2015;106:85–90. doi:10.1016/j.neuropharm.2015.08.019.

    CAS  PubMed  Google Scholar 

  54. Dere E, De Souza-Silva MA, Topic B, et al. Histidine-decarboxylase knockout mice show deficient nonreinforced episodic object memory, improved negatively reinforced water-maze performance, and increased neo- and ventro-striatal dopamine turnover. Learn Mem. 2003;10(6):510–9. doi:10.1101/lm.67603.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ercan-Sencicek AG, Stillman AA, Ghosh AK, et al. L-histidine decarboxylase and Tourette’s syndrome. N Engl J Med. 2010;20;362(20):1901–8. doi:10.1056/NEJMoa0907006.

    CAS  PubMed  Google Scholar 

  56. Escobedo-Avila I, Vargas-Romero F, Molina-Hernandez A, et al. Histamine impairs midbrain dopaminergic development in vivo by activating histamine type 1 receptors. Mol Brain. 2014;7:58. doi:10.1186/s13041-014-0058-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vizuete ML, Merino M, Venero JL, et al. Histamine infusion induces a selective dopaminergic neuronal death along with an inflammatory reaction in rat substantia nigra. J Neurochem. 2000;75(2):540–52.

    CAS  PubMed  Google Scholar 

  58. Rinne JO, Anichtchik OV, Eriksson KS, et al. Increased brain histamine levels in Parkinson’s disease but not in multiple system atrophy. J Neurochem. 2002;81(5):954–60.

    CAS  PubMed  Google Scholar 

  59. Korotkova TM, Haas HL, Brown RE. Histamine excites GABAergic cells in the rat substantia nigra and ventral tegmental area in vitro. Neurosci Lett. 2002;320(3):133–6.

    CAS  PubMed  Google Scholar 

  60. Zhou FW, Xu JJ, Zhao Y, et al. Opposite functions of histamine H1 and H2 receptors and H3 receptor in substantia nigra pars reticulata. J Neurophysiol. 2006;96(3):1581–91.

    CAS  PubMed  Google Scholar 

  61. Schlicker E, Fink K, Detzner M, et al. Histamine inhibits dopamine release in the mouse striatum via presynaptic H3 receptors. J Neural Transm Gen Sect. 1993;93(1):1–10.

    CAS  PubMed  Google Scholar 

  62. Pollard H, Moreau J, Arrang JM, et al. A detailed autoradiographic mapping of histamine H3 receptors in rat brain areas. Neuroscience. 1993;52(1):169–89.

    CAS  PubMed  Google Scholar 

  63. Sanchez-Lemus E, Arias-Montano JA. Histamine H3 receptor activation inhibits dopamine D1 receptor-induced cAMP accumulation in rat striatal slices. Neurosci Lett. 2004;364(3):179–84. doi:10.1016/j.neulet.2004.04.045.

    Article  CAS  PubMed  Google Scholar 

  64. Clapham J, Kilpatrick GJ. Thioperamide, the selective histamine H3 receptor antagonist, attenuates stimulant-induced locomotor activity in the mouse. Eur J Pharmacol. 1994;259(2):107–14.

    CAS  PubMed  Google Scholar 

  65. Fox GB, Esbenshade TA, Pan JB, et al. Pharmacological properties of ABT-239 [4-(2-{2-[(2R)-2-Methylpyrrolidinyl]ethyl}-benzofuran-5-yl)benzonitrile]: II. Neurophysiological characterization and broad preclinical efficacy in cognition and schizophrenia of a potent and selective histamine H3 receptor antagonist. J Pharmacol Exp Ther. 2005;313(1):176–90. doi:10.1124/jpet.104.078402.

    Article  CAS  PubMed  Google Scholar 

  66. Morisset S, Pilon C, Tardivel-Lacombe J, et al. Acute and chronic effects of methamphetamine on tele-methylhistamine levels in mouse brain: selective involvement of the D(2) and not D(3) receptor. J Pharmacol Exp Ther. 2002;300(2):621–8.

    CAS  PubMed  Google Scholar 

  67. Toyota H, Dugovic C, Koehl M, et al. Behavioral characterization of mice lacking histamine H(3) receptors. Mol Pharmacol. 2002;62(2):389–97.

    CAS  PubMed  Google Scholar 

  68. Southam E, Cilia J, Gartlon JE, et al. Preclinical investigations into the antipsychotic potential of the novel histamine H3 receptor antagonist GSK207040. Psychopharmacology (Berl). 2009;201(4):483–94. doi:10.1007/s00213-008-1310-9.

    Article  CAS  Google Scholar 

  69. Ligneau X, Perrin D, Landais L, et al. BF2.649 [1-{3-[3-(4-Chlorophenyl)propoxy]propyl}piperidine, hydrochloride], a nonimidazole inverse agonist/antagonist at the human histamine H3 receptor: preclinical pharmacology. J Pharmacol Exp Ther. 2007;320(1):365–75. doi:10.1124/jpet.106.111039.

    Article  CAS  PubMed  Google Scholar 

  70. Vanhanen J, Kinnunen M, Nuutinen S, et al. Histamine H3 receptor antagonist JNJ-39220675 modulates locomotor responses but not place conditioning by dopaminergic drugs. Psychopharmacology (Berl). 2015;232(6):1143–53. doi:10.1007/s00213-014-3751-7.

    Article  CAS  Google Scholar 

  71. Cousins V, Rose JE, Levin ED. IV nicotine self-administration in rats using a consummatory operant licking response: sensitivity to serotonergic, glutaminergic and histaminergic drugs. Prog Neuropsychopharmacol Biol Psychiatry. 2014;54:200–5. doi:10.1016/j.pnpbp.2014.06.004.

    Article  CAS  PubMed  Google Scholar 

  72. Levin ED, Slade S, Wells C, et al. Histamine H(1) antagonist treatment with pyrilamine reduces nicotine self-administration in rats. Eur J Pharmacol. 2011;650(1):256–60. doi:10.1016/j.ejphar.2010.10.013.

    Article  CAS  PubMed  Google Scholar 

  73. Munzar P, Tanda G, Justinova Z, et al. Histamine h3 receptor antagonists potentiate methamphetamine self-administration and methamphetamine-induced accumbal dopamine release. Neuropsychopharmacology. 2004;29(4):705–17. doi:10.1038/sj.npp.1300380.

    Article  CAS  PubMed  Google Scholar 

  74. Lintunen M, Hyytia P, Sallmen T, et al. Increased brain histamine in an alcohol-preferring rat line and modulation of ethanol consumption by H(3) receptor mechanisms. FASEB J. 2001;15(6):1074–6.

    CAS  PubMed  Google Scholar 

  75. Okuda T, Zhang D, Shao H, et al. Methamphetamine- and 3,4-methylenedioxymethamphetamine-induced behavioral changes in histamine H3-receptor knockout mice. J Pharmacol Sci. 2009;111(2):167–74.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saara Nuutinen Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nuutinen, S., Salminen, O. (2016). Interaction of Brain Histaminergic and Dopaminergic Systems. In: Blandina, P., Passani, M. (eds) Histamine Receptors. The Receptors, vol 28. Humana, Cham. https://doi.org/10.1007/978-3-319-40308-3_12

Download citation

Publish with us

Policies and ethics