Advertisement

Modulation by Histamine H3 Receptors of Neurotransmitter Release in the Basal Ganglia

  • Ricardo Márquez-Gómez
  • Ana-Maricela García-Gálvez
  • Guadalupe-Elide Morales-Figueroa
  • José-Antonio Arias-MontañoEmail author
Chapter
Part of the The Receptors book series (REC, volume 28)

Abstract

Among the four G-protein coupled receptors (H1-H4 ) identified as the mediators of the biological effects of histamine, the H3 receptor (H3R) distinguishes for its almost exclusive expression in the nervous system and its dual function as auto- and hetero-receptor that enables H3Rs to modulate the histaminergic and other neurotransmitter systems. The basal ganglia are neuronal nuclei that form a sub-cortical circuitry responsible for integrating motor and sensorial information originated in the cerebral cortex and the thalamus. The abundant presence of H3Rs in the basal ganglia confers these receptors a preferential and strategic position to modulate both the incoming and the outgoing synaptic information. In this chapter we review the control by H3Rs of the release of the neurotransmitters involved in the basal ganglia circuitry.

Keywords

Acetylcholine Basal ganglia Calcium channels Cerebral cortex Central nervous system GABA G protein-coupled receptors Dopamine Globus pallidus Glutamate Histamine Histamine H3 receptors Hypothalamus Neurotransmitter release Neuromodulation Noradrenaline Serotonin (5-Hydroxytryptamine) Striatum Substantia nigra Subthalamic nucleus Thalamus 

Abbreviations

5-HT

5-Hydroxytryptamine (serotonin)

A1R

Adenosine A1 receptor

A2AR

Adenosine A2A receptor

BG

Basal ganglia

CNS

Central nervous system

D1R

Dopamine D1-like receptor

D2R

Dopamine D2-like receptor

EPSCs

Excitatory postsynaptic currents

FP

Field potential

GABA

γ-Aminobutyric acid

GIRK

G protein-gated inwardly rectifying K+ channel

GP

Globus pallidus

GPCR

G protein-coupled receptor

H1R

Histamine H1 receptor

H2R

Histamine H2 receptor

H3R

Histamine H3 receptor

H4R

Histamine H4 receptor

HDC

Histidine decarboxylase

IPSCs

Inhibitory postsynaptic currents

MSN

Medium-sized spiny neuron

PKA

Protein kinase A

PKC

Protein kinase C

PLC

Phospholipase C

RN

Raphe nuclei

SN

Substantia nigra

SNc

Substantia nigra pars compacta

SNr

Substantia nigra pars reticulata

STN

Subthalamic nucleus

TH

Tyrosine hydroxylase

TMN

Tuberomammillary nucleus

Notes

Acknowledgement

Research in our laboratory is supported by Cinvestav and the Mexican Council for Science and Technology (Conacyt).

References

  1. 1.
    Bolam JP, Hanley JJ, Booth PA, Bevan MD. Synaptic organisation of the basal ganglia. J Anat. 2000;196:527–42.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Fuxe K, Ferré S, Genedani S, Franco R, Agnati LF. Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol Behav. 2007;92:210–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Alexander SPH, Mathie A, Peters JA. Guide to receptors and channels (GRAC), 5th edition. Br J Pharmacol. 2011;164 Suppl 1:S32.Google Scholar
  4. 4.
    Gerfen CR, Surmeier DJ. Modulation of striatal projection systems by dopamine. Annu Rev Neurosci. 2011;34:441–66.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Obeso JA, Rodriguez-Oroz MC, Benitez-Temino B, Blesa FJ, Guridi J, Marin C, Rodriguez M. Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord. 2008;23 Suppl 3:S548–59.PubMedCrossRefGoogle Scholar
  6. 6.
    Obeso JA, Lanciego JL. Past, present, and future of the pathophysiological model of the Basal Ganglia. Front Neuroanat. 2011;5:39.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Saunders A, Oldenburg IA, Berezovskii VK, Jhonson CA, Kingery ND, Elliot HL, Xie T, Gerfen CR, Sabatini BL. A direct GABAergic output from the basal ganglia to prefrontal cortex. Nature. 2015;521:85–9.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Harpsøe K, Isberg V, Tehan BG, Weiss D, Arsova A, Marshall FH, Bräuner-Osborne H, Gloriam DE. Selective negative allosteric modulation of metabotropic glutamate receptors—a structural perspective of ligands and mutants. Sci Rep. 2015;5:13869.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Surmeier DJ, Ding J, Day M, Wang Z, Shen W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 2007;30:228–35.PubMedCrossRefGoogle Scholar
  10. 10.
    Bormann J. The “ABC” of GABA receptor. Trends Pharmacol Sci. 2000;21:16–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Bolam JP, Somogyi P, Takagi H, Fodor I, Smith AD. Localization of substance P-like immunoreactivity in neurons and nerve terminals in the neostriatum of the rat: a correlated light and electron microscopic study. J Neurocytol. 1983;12:325–44.PubMedCrossRefGoogle Scholar
  12. 12.
    Koós T, Tepper JM. Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nat Neurosci. 1999;2:467–72.PubMedCrossRefGoogle Scholar
  13. 13.
    Mallet N, Micklem BR, Henny P, Brown MT, Williams C, Bolam JP, Nakamura KC, Magill PJ. Dichotomous organization of the external globus pallidus. Neuron. 2012;74:1075–86.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Somogyi P, Priestley JV, Cuello AC, Smith AD, Takagi H. Synaptic connections of enkephalin-immunoreactive nerve terminals in the neostriatum: a correlated light and electron microscopic study. J Neurocytol. 1982;11:779–807.PubMedCrossRefGoogle Scholar
  15. 15.
    Wilson CJ, Groves PM. Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular inject of the horseradish peroxidase. J Comp Neurol. 1980;194:599–615.PubMedCrossRefGoogle Scholar
  16. 16.
    Taverna S, Ilijic E, Surmeier DJ. Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson’s disease. J Neurosci. 2008;28:5504–12.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Silberberg G, Bolam JP. Local and afferent synaptic pathways in the striatal microcircuitry. Curr Opin Neurobiol. 2015;33:182–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Dautan D, Huerta-Ocampo I, Witten IB, Deisseroth K, Bolam JP, Gerdjikov T, Mena-Segovia J. A major external source of cholinergic innervations of the striatum and nucleus accumbens originates in the brainstem. J Neurosci. 2014;34:4509–18.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Goldberg JA, Ding JB, Surmeier DJ. Muscarinic modulation of striatal function and circuitry. Handb Exp Pharmacol. 2012;208:223–41.CrossRefGoogle Scholar
  20. 20.
    Tepper JM, Bolam JP. Functional diversity and specificity of neostriatal interneurons. Curr Opin Neurobiol. 2004;14:685–92.PubMedCrossRefGoogle Scholar
  21. 21.
    Molina-Hernández A, Díaz NF, Arias-Montaño JA. Histamine in brain development. J Neurochem. 2012;122:872–82.PubMedCrossRefGoogle Scholar
  22. 22.
    Panula P, Sundvik M, Karlstedt K. Developmental roles of brain histamine. Trends Neurosci. 2014;37:159–68.PubMedCrossRefGoogle Scholar
  23. 23.
    Airaksinen MS, Panula P. The histaminergic system in the guinea pig central nervous system: an immunocytochemical mapping study using an antiserum against histamine. J Comp Neurol. 1988;273:163–86.PubMedCrossRefGoogle Scholar
  24. 24.
    Cumming P, Damsma G, Fibiger HC, Vincent SR. Characterization of extracellular histamine in the striatum and bed nucleus of the stria terminalis of the rat: an in vivo microdialysis study. J Neurochem. 1991;56:1797–803.PubMedCrossRefGoogle Scholar
  25. 25.
    Haas HL, Sergeeva OA, Selbach O. Histamine in the nervous system. Physiol Rev. 2008;88:1183–241.PubMedCrossRefGoogle Scholar
  26. 26.
    Inagaki N, Yamatodani A, Shinoda K, Panula P, Watanabe T, Shiotani Y, Wada H. Histaminergic nerve fibers in the median eminence and hypophysis of rats demonstrated immunocytochemically with antibodies against histidine decarboxylase and histamine. Brain Res. 1988;439:402–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Krusong K, Ercan-Sencicek AG, Xu M, Ohtsu H, Anderson GM, State MW, Pittenger C. High levels of histidine decarboxylase in the striatum of mice and rats. Neurosci Lett. 2011;495:110–4.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Russell WL, Henry DP, Phebus LA, Clemens JA. Release of histamine in rat hypothalamus and corpus striatum in vivo. Brain Res. 1990;512:95–101.PubMedCrossRefGoogle Scholar
  29. 29.
    Watanabe T, Taguchi Y, Shiosaka S, Tanaka J, Kubota H, Terano Y, Tohyama M, Wada H. Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res. 1984;295:13–25.PubMedCrossRefGoogle Scholar
  30. 30.
    Haas HL, Reiner PB. Membrane properties of histaminergic tuberomammillary neurones of the rat hypothalamus in vitro. J Physiol. 1988;399:633–46.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ericson H, Blomqvist A, Köhler C. Origin of neuronal inputs to the region of the tuberomammillary nucleus of the rat brain. J Comp Neurol. 1991;311:45–64.PubMedCrossRefGoogle Scholar
  32. 32.
    Panula P, Chazot PL, Cowart M, Gutzmer R, Leurs R, Liu WL, Stark H, Thurmond RL, Haas HL. International union of basic and clinical pharmacology. XCVIII. Histamine receptors. Pharmacol Rev. 2015;67:601–55.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Panula P, Pirvola U, Auvinen S, Airaksinen MS. Histamine-immunoreactive nerve fibers in the rat brain. Neuroscience. 1989;28:585–610.PubMedCrossRefGoogle Scholar
  34. 34.
    Takagi H, Morishima Y, Matsuyama T, Hayashi H, Watanabe T, Wada H. Histaminergic axons in the neostriatum and cerebral cortex of the rat: a correlated light and electron microscopic immunocytochemical study using histidine decarboxylase as a marker. Brain Res. 1986;364:114–23.PubMedCrossRefGoogle Scholar
  35. 35.
    Taylor KM, Snyder SH. The release of histamine from tissue slices of rat hypothalamus. J Neurochem. 1973;21:1215–23.PubMedCrossRefGoogle Scholar
  36. 36.
    Arrang J-M, Garbarg M, Schwartz J-C. Autoregulation of histamine synthesis mediated by presynaptic H3-receptors. Neuroscience. 1987;15:553–62.CrossRefGoogle Scholar
  37. 37.
    Morisset S, Rouleau A, Ligneau X, Gbahou F, Tardivel-Lacombe J, Stark H, Schunack W, Ganellin CR, Schwartz JC, Arrang JM. High constitutive activity of native H3 receptors regulates histamine neurons in brain. Nature. 2000;408:860–4.PubMedCrossRefGoogle Scholar
  38. 38.
    Gulat-Marnay C, Lafitte A, Arrang JM, Schwartz JC. Modulation of histamine release and synthesis in the brain mediated by α2-adrenoceptors. J Neurochem. 1989;53:513–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Oishi Y, Huang ZL, Fredholm B, Urade Y, Hayaishi O. Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via A1 receptors and promotes non-rapid eye movement sleep. Proc Natl Acad Sci U S A. 2008;105:19992–7.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Prast H, Heistracher M, Philippu A. In vivo modulation of the histamine release in the hypothalamus by adrenoreceptor agonists and antagonists. Naunyn Schmiedebergs Arch Pharmacol. 1991;344:183–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Amphoux A, Vialou V, Drescher E, Brüss M, Mannoury La Cour C, Rochat C, Millan MJ, Giros B, Bönisch H, Gautron S. Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology. 2006;50:941–52.PubMedCrossRefGoogle Scholar
  42. 42.
    Engel K, Zhou M, Wang J. Identification and characterization of a novel monoamine transporter in the human brain. J Biol Chem. 2004;279:50042–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Yoshikawa T, Naganuma F, Iida T, Nakamura T, Harada R, Mohsen AS, Kasajima A, Sasano H, Yanai K. Molecular mechanism of histamine clearance by primary human astrocytes. Glia. 2013;61:905–16.PubMedCrossRefGoogle Scholar
  44. 44.
    Barnes WG, Hough LB. Membrane-bound histamine N-methyltransferase in mouse brain: possible role in the synaptic inactivation of neuronal histamine. J Neurochem. 2002;82:1262–71.PubMedCrossRefGoogle Scholar
  45. 45.
    Maldonado M, Maeyama K. The metabolism of histamine in rat hypothalamus and cortex after reserpine treatment. Neurochem Int. 2015;85–86:31–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Taylor KM, Snyder SH. Histamine in rat brain: sensitive assay of endogenous levels, formation in vivo and lowering by inhibitors of histidine decarboxylase. J Pharmacol Exp Ther. 1971;179:619–33.PubMedGoogle Scholar
  47. 47.
    Chikai T, Oishi R, Saeki K. Microdialysis study of the effects of sedative drugs on extracellular histamine in the striatum of freely moving rats. J Pharmacol Exp Ther. 1993;266:1277–81.PubMedGoogle Scholar
  48. 48.
    Rinne JO, Anichtchik OV, Eriksson KS, Kaslin J, Tuomisto L, Kalimo H, Röyttä M, Panula P. Increased brain histamine levels in Parkinson’s disease but not in multiple system atrophy. J Neurochem. 2002;81:954–60.PubMedCrossRefGoogle Scholar
  49. 49.
    Mazurkiewicz-Kwilecki IM, Nsonwah S. Changes in the regional brain histamine and histidine levels in postmortem brains of Alzheimer patients. Can J Physiol Pharmacol. 1989;67:75–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Hill SJ, Ganellin CR, Timmerman H, Schwartz JC, Shankley NP, Young JM, Schunack W, Levi R, Haas HL. International Union of Pharmacology. XIII. Classification of histamine receptors. Pharmacol Rev. 1997;49:253–78.PubMedGoogle Scholar
  51. 51.
    Martinez-Mir MI, Pollard H, Moreau J, Arrang JM, Ruat M, Traiffort E, Schwartz JC, Palacios JM. Three histamine receptors (H1, H2 and H3) visualized in the brain of human and non-human primates. Brain Res. 1990;526:322–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Mobarakeh J, Takahashi K, Sakurada S, Kuramasu A, Yanai K. Enhanced antinociceptive effects of morphine in histamine H2 receptor gene knockout mice. Neuropharmacology. 2006;51:612–22.PubMedCrossRefGoogle Scholar
  53. 53.
    Breunig E, Michel K, Zeller F, Seidl S, Weyhern CW, Schemann M. Histamine excites neurones in the human submucous plexus through activation of H1, H2, H3 and H4 receptors. J Physiol. 2007;583:731–42.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    de Esch IJ, Thurmond RL, Jongejan A, Leurs R. The histamine H4 receptor as a new therapeutic target for inflammation. Trends Pharmacol Sci. 2005;26:462–9.PubMedGoogle Scholar
  55. 55.
    Liu C, Ma X, Jiang X, Wilson SJ, Hofstra CL, Blevitt J, Pyati J, Li X, Chai W, Carruthers N, Lovenberg TW. Cloning and pharmacological characterization of a fourth histamine receptor (H4) expressed in bone marrow. Mol Pharmacol. 2001;59:420–6.PubMedGoogle Scholar
  56. 56.
    Morgan RK, McAllister B, Cross L, Green DS, Kornfeld H, Center DM, Cruikshank WW. Histamine 4 receptor activation induces recruitment of FoxP3+ T cells and inhibits allergic asthma in a murine model. J Immunol. 2007;178:8081–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Cogé F, Guénin SP, Audinot V, Renouard-Try A, Beauverger P, Macia C, Ouvry C, Nagel N, Rique H, Boutin JA, Galizzi JP. Genomic organization and characterization of splice variants of the human histamine H3 receptor. Biochem J. 2001;355:279–88.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Drutel G, Peitsaro N, Karlstedt K, Wieland K, Smit MJ, Timmerman H, Panula P, Leurs R. Identification of rat H3 receptor isoforms with different brain expression and signaling properties. Mol Pharmacol. 2001;59:1–8.PubMedGoogle Scholar
  59. 59.
    Esbenshade TA, Browman KE, Bitner RS, Strakhova M, Cowart MD, Brioni JD. The histamine H3 receptor: an attractive target for the treatment of cognitive disorders. Br J Pharmacol. 2008;154:1166–81.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Morisset S, Sasse A, Gbahou F, Héron A, Ligneau X, Tardivel-Lacombe J, Schwartz JC, Arrang JM. The rat H3 receptor: gene organization and multiple isoforms. Biochem Biophys Res Commun. 2001;280:75–80.PubMedCrossRefGoogle Scholar
  61. 61.
    Strakhova MI, Fox GB, Carr TL, Witte DG, Vortherms TA, Manelli AM, Miller TR, Yao BB, Brioni JD, Esbenshade TA. Cloning and characterization of the monkey histamine H3 receptor isoforms. Eur J Pharmacol. 2008;601:8–15.PubMedCrossRefGoogle Scholar
  62. 62.
    Tardivel-Lacombe J, Morisset S, Gbahou F, Schwartz JC, Arrang JM. Chromosomal mapping and organization of the human histamine H3 receptor gene. Neuroreport. 2001;12:321–4.PubMedCrossRefGoogle Scholar
  63. 63.
    Wellendorph P, Goodman MW, Burstein ES, Nash NR, Brann MR, Weiner DM. Molecular cloning and pharmacology of functionally distinct isoforms of the human histamine H3 receptor. Neuropharmacology. 2002;42:929–40.PubMedCrossRefGoogle Scholar
  64. 64.
    Wiedemann P, Bönisch H, Oerters F, Brüss M. Structure of the human histamine H3 receptor gene (HRH3) and identification of naturally occurring variations. J Neural Transm. 2002;109:443–53.PubMedCrossRefGoogle Scholar
  65. 65.
    Cumming P, Laliberté C, Gjedde A. Distribution of histamine H3 binding in forebrain of mouse and guinea pig. Brain Res. 1994;664:276–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Pillot C, Heron A, Cochois V, Tardivel-Lacombe J, Ligneau X, Schwartz JC, Arrang JM. A detailed mapping of the histamine H3 receptor and its gene transcripts in rat brain. Neuroscience. 2002;114:173–93.PubMedCrossRefGoogle Scholar
  67. 67.
    Anichtchik OV, Peitsaro N, Rinne JO, Kalimo H, Panula P. Distribution and modulation of histamine H3 receptors in basal ganglia and frontal cortex of healthy controls and patients with Parkinson’s disease. Neurobiol Dis. 2001;8:707–16.PubMedCrossRefGoogle Scholar
  68. 68.
    Vizuete ML, Traiffort E, Bouthenet ML, Ruat M, Souil E, Tardivel-Lacombe J, Schwartz JC. Detailed mapping of the histamine H2 receptor and its gene transcripts in guinea-pig brain. Neuroscience. 1997;80:321–43.PubMedCrossRefGoogle Scholar
  69. 69.
    Lovenberg TW, Roland BL, Wilson SJ, Jiang X, Pyati J, Huvar A, Jackson MR, Erlander MG. Cloning and functional expression of the human histamine H3 receptor. Mol Pharmacol. 1999;55:1101–7.PubMedGoogle Scholar
  70. 70.
    Bongers G, Krueger KM, Miller TR, Baranowski JL, Estvander BR, Witte DG, Strakhova MI, van Meer P, Bakker RA, Cowart MD, Hancock AA, Esbenshade TA, Leurs R. An 80-amino acid deletion in the third intracellular loop of a naturally occurring human histamine H3 isoform confers pharmacological differences and constitutive activity. J Pharmacol Exp Ther. 2007;323:888–98.PubMedCrossRefGoogle Scholar
  71. 71.
    Bongers G, Bakker R, Leurs R. Molecular aspects of the histamine H3 receptor. Biochem Pharmacol. 2007;73:1195–204.PubMedCrossRefGoogle Scholar
  72. 72.
    Arrang JM, Garbarg M, Schwartz JC. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature. 1983;302:832–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Arrang JM, Garbarg M, Lancelot JC, Lecomte JM, Pollard H, Robba M, Schunack W, Schwartz JC. Highly potent and selective ligands for histamine H3-receptors. Nature. 1987;327:117–23.PubMedCrossRefGoogle Scholar
  74. 74.
    Feuerstein TJ. Presynaptic receptors for dopamine, histamine, and serotonin. Handb Exp Pharmacol. 2008;184:289–338.CrossRefGoogle Scholar
  75. 75.
    Panula P, Nuutinen S. The histaminergic network in the brain: basic organization and role in disease. Nat Rev Neurosci. 2013;14:472–87.PubMedCrossRefGoogle Scholar
  76. 76.
    González-Sepúlveda M, Rosell S, Hoffmann H, Castillo-Ruiz MM, Mignon V, Moreno-Delgado D, Vignes M, Díaz J, Sabriá J, Ortiz J. Cellular distribution of the histamine H3 receptor in the basal ganglia: Functional modulation of dopamine and glutamate neurotransmission. Basal Ganglia. 2013;3:109–21.CrossRefGoogle Scholar
  77. 77.
    Clark EA, Hill SJ. Sensitivity of histamine H3 receptor agonist-stimulated [35S]GTP γ[S] binding to pertussis toxin. Eur J Pharmacol. 1996;296:223–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Haas H, Panula P. The role of histamine and the tuberomammillary nucleus in the nervous system. Nat Rev Neurosci. 2003;4:121–30.PubMedCrossRefGoogle Scholar
  79. 79.
    Leurs R, Bakker RA, Timmerman H, de Esch IJ. The histamine H3 receptor: from gene cloning to H3 receptor drugs. Nat Rev Drug Discov. 2005;4:107–20.PubMedCrossRefGoogle Scholar
  80. 80.
    Rouleau A, Ligneau X, Tardivel-Lacombe J, Morisset S, Gbahou F, Schwartz JC, Arrang JM. Histamine H3-receptor-mediated [35S]GTPγ[S] binding: evidence for constitutive activity of the recombinant and native rat and human H3 receptors. Br J Pharmacol. 2002;135:383–92.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Wieland K, Bongers G, Yamamoto Y, Hashimoto T, Yamatodani A, Menge WM, Timmerman H, Lovenberg TW, Leurs R. Constitutive activity of histamine H3 receptors stably expressed in SK-N-MC cells: display of agonism and inverse agonism by H3 antagonists. J Pharmacol Exp Ther. 2001;299:908–14.PubMedGoogle Scholar
  82. 82.
    Zamponi GW, Currie KP. Regulation of CaV2 calcium channels by G protein coupled receptors. Biochim Biophys Acta. 2013;1828:1629–43.PubMedCrossRefGoogle Scholar
  83. 83.
    Takeshita Y, Watanabe T, Sakata T, Munakata M, Ishibashi H, Akaike N. Histamine modulates high-voltage-activated calcium channels in neurons dissociated from the rat tuberomammillary nucleus. Neuroscience. 1998;87:797–805.PubMedCrossRefGoogle Scholar
  84. 84.
    Molina-Hernández A, Nuñez A, Sierra JJ, Arias-Montaño JA. Histamine H3 receptor activation inhibits glutamate release from rat striatal synaptosomes. Neuropharmacology. 2001;41:928–34.PubMedCrossRefGoogle Scholar
  85. 85.
    Silver RB, Poonwasi KS, Seyedi N, Wilson SJ, Lovenberg TW, Levi R. Decreased intracellular calcium mediates the histamine H3-receptor-induced attenuation of norepinephrine exocytosis from cardiac sympathetic nerve endings. Proc Natl Acad Sci U S A. 2002;99:501–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Arias-Montaño JA, Floran B, Garcia M, Aceves J, Young JM. Histamine H3 receptor-mediated inhibition of depolarization-induced, dopamine D1 receptor-dependent release of [3H]-γ-aminobutyric acid from rat striatal slices. Br J Pharmacol. 2001;133:165–71.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Arias-Montaño JA, Floran B, Floran L, Aceves J, Young JM. Dopamine D1 receptor facilitation of depolarization-induced release of γ-amino-butyric acid in rat striatum is mediated by the cAMP/PKA pathway and involves P/Q-type calcium channels. Synapse. 2007;61:310–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Sakurai T, Hell JW, Woppmann A, Miljanich GP, Catterall WA. Immunochemical identification and differential phosphorylation of alternatively spliced forms of the α1A subunit of brain calcium channels. J Biol Chem. 1995;270:21234–42.PubMedCrossRefGoogle Scholar
  89. 89.
    Evans GJ, Morgan A. Regulation of the exocytotic machinery by cAMP-dependent protein kinase: implications for presynaptic plasticity. Biochem Soc Trans. 2003;31:824–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Leenders AG, Sheng ZH. Modulation of neurotransmitter release by the second messenger-activated protein kinases: implications for presynaptic plasticity. Pharmacol Ther. 2005;105:69–84.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Seino S, Shibasaki T. PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev. 2005;85:1303–42.PubMedCrossRefGoogle Scholar
  92. 92.
    Südhof TC. The synaptic vesicle cycle. Annu Rev Neurosci. 2004;27:509–47.PubMedCrossRefGoogle Scholar
  93. 93.
    Thakur P, Stevens DR, Sheng ZH, Rettig J. Effects of PKA-mediated phosphorylation of snapin on synaptic transmission in cultured hippocampal neurons. J Neurosci. 2004;24:6476–81.PubMedCrossRefGoogle Scholar
  94. 94.
    Meneses D, Mateos V, Islas G, Barral J. G-protein-coupled inward rectifier potassium channels involved in corticostriatal presynaptic modulation. Synapse. 2015;69:446–52.PubMedCrossRefGoogle Scholar
  95. 95.
    Sahlholm K, Nilsson J, Marcellino D, Fuxe K, Arhem P. Voltage sensitivities and deactivation kinetics of histamine H3 and H4 receptors. Biochim Biophys Acta. 2012;1818:3081–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Bongers GM. Signal transduction of the histamine H3 receptor. 2008. PhD thesis, Vrije Universiteit Amsterdam, 2008. Accessed 4 Nov 2015.Google Scholar
  97. 97.
    Zeng L, Webster SV, Newton PM. The biology of protein kinase C. Adv Exp Med Biol. 2012;740:639–61.PubMedCrossRefGoogle Scholar
  98. 98.
    Strock J, Diversé-Pierluissi MA. Ca2+ channels as integrators of G protein-mediated signaling in neurons. Mol Pharmacol. 2004;66:1071–6.PubMedCrossRefGoogle Scholar
  99. 99.
    Tedford HW, Zamponi GW. Direct G protein modulation of Cav2 calcium channels. Pharmacol Rev. 2006;58:837–62.PubMedCrossRefGoogle Scholar
  100. 100.
    Kincaid AE, Wilson CJ. Corticostriatal innervations of the patch and matrix in the rat neostriatum. J Comp Neurol. 1996;374:578–92.PubMedCrossRefGoogle Scholar
  101. 101.
    Molina-Hernández A, Nuñez A, Arias-Montaño JA. Histamine H3-receptor activation inhibits dopamine synthesis in rat striatum. Neuroreport. 2000;11:163–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Doreulee N, Yanovsky Y, Flagmeyer I, Stevens DR, Haas HL, Brown RE. Histamine H3 receptors depress synaptic transmission in the corticostriatal pathway. Neuropharmacology. 2001;40:106–13.PubMedCrossRefGoogle Scholar
  103. 103.
    Ellender TJ, Huerta-Ocampo I, Deisseroth K, Capogna M, Bolam JP. Differential modulation of excitatory and inhibitory striatal synaptic transmission by histamine. J Neurosci. 2011;31:15340–51.PubMedCrossRefGoogle Scholar
  104. 104.
    Smith Y, Galvan A, Ellender TJ, Doig N, Villalba RM, Huerta-Ocampo I, Wichmann T, Bolam JP. The thalamostriatal system in normal and diseased states. Front Syst Neurosci. 2014;8:5.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Lacey CJ, Bolam JP, Magill PJ. Novel and distinct operational principles of intralaminar thalamic neurons and their striatal projections. J Neurosci. 2007;27:4374–84.PubMedCrossRefGoogle Scholar
  106. 106.
    Smith Y, Raju DV, Pare JF, Sidibe M. The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci. 2004;27:520–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Bolam JP, Ellender TJ. Histamine and the striatum. Neuropharmacology. 2015. doi: 10.1016/j.neuropharm.2015.08.013.
  108. 108.
    Moreno E, Hoffmann H, Gonzalez-Sepúlveda M, Navarro G, Casadó V, Cortés A, Mallol J, Vignes M, McCormick PJ, Canela EI, Lluís C, Moratalla R, Ferré S, Ortiz J, Franco R. Dopamine D1-histamine H3 receptor heteromers provide a selective link to MAPK signaling in GABAergic neurons of the direct striatal pathway. J Biol Chem. 2011;286:5846–54.PubMedCrossRefGoogle Scholar
  109. 109.
    Chuhma N, Tanaka KF, Hen R, Rayport S. Functional connectome of the striatal medium spiny neuron. J Neurosci. 2011;31:1183–92.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Planert H, Szydlowski SN, Hjorth JJ, Grillner S, Silberberg G. Dynamics of synaptic transmission between fast-spiking interneurons and striatal projection neurons of the direct and indirect pathways. J Neurosci. 2010;30:3499–507.PubMedCrossRefGoogle Scholar
  111. 111.
    Tunstall MJ, Oorschot DE, Kean A, Wickens JR. Inhibitory interactions between spiny neurons in the rat striatum. J Neurophysiol. 2002;88:1263–9.PubMedGoogle Scholar
  112. 112.
    García M, Florán B, Arias-Montaño JA, Young JM, Aceves J. Histamine H3 receptor activation selectively inhibits dopamine D1 receptor-dependent [3H]GABA release from depolarization-stimulated slices of rat substantia nigra pars reticulata. Neuroscience. 1997;80:241–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Ryu JH, Yanai K, Iwata R, Ido T, Watanabe T. Heterogeneous distribution of histamine H3, and dopamine D1 and D2 receptors in rat brain. Neuroreport. 1994;5:621–4.PubMedCrossRefGoogle Scholar
  114. 114.
    Jang I, Rhee JS, Watanabe T, Akaike N, Akaike N. Histaminergic modulation of GABAergic transmission in rat ventromedial hypothalamic neurons. J Physiol. 2001;534:791–803.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Calabresi P, Pisani A, Mercuri NB, Bernardi G. The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia. Trends Neurosci. 1996;19:19–24.PubMedCrossRefGoogle Scholar
  116. 116.
    Calabresi P, Galletti F, Saggese E, Ghiglieri V, Picconi B. Neuronal networks and synaptic plasticity in Parkinson’s disease: beyond motor deficits. Parkinsonism Relat Disord. 2007;13 Suppl 3:259–62.CrossRefGoogle Scholar
  117. 117.
    Benoti-Marand M, Borrelli E, Gonon F. Inhibition of dopamine release via presynaptic D2 receptors: time course and functional characteristics in vivo. J Neurosci. 2001;21:9134–41.Google Scholar
  118. 118.
    L’hirondel M, Chéramy A, Godeheu G, Artaud F, Saiardi A, Borrelli E, Glowinski J. Lack of autoreceptor-mediated inhibitory control of dopamine release in striatal synaptosomes of D2 receptor-deficient mice. Brain Res. 1998;792:253–62.PubMedCrossRefGoogle Scholar
  119. 119.
    Lindgren N, Xu ZQ, Herrera-Marschitz M, Haycock J, Hökfelt T, Fisone G. Dopamine D2 receptor regulate tyrosine hydroxylase activity and phosphorylation at Ser40 in rat striatum. Eur J Neurosci. 2001;13:773–80.PubMedCrossRefGoogle Scholar
  120. 120.
    Schliker E, Fin K, Detzner M, Göther M. Histamine inhibits dopamine release in the mouse striatum via presynaptic H3 receptors. J Neural Transm Gen Sect. 1993;93:1–10.CrossRefGoogle Scholar
  121. 121.
    Smits RP, Mulder AH. Inhibitory effects of histamine on the release of serotonin and noradrenaline from rat brain slices. Neurochem Int. 1991;18:215–20.PubMedCrossRefGoogle Scholar
  122. 122.
    Aquino-Miranda G, Escamilla-Sánchez J, González-Pantoja R, Bueno-Nava A, Arias-Montaño JA. Histamine H3 receptors activation inhibits dopamine synthesis but not release or uptake in rat nucleus accumbens. Neuropharmacology. 2016;106:91–101.Google Scholar
  123. 123.
    Fox GB, Esbenshade TA, Pan JB, Radek RJ, Krueger KM, Yao BB, Browman KE, Buckley MJ, Ballard ME, Komater VA, Miner H, Zhang M, Faghih R, Rueter LE, Bitner RS, Drescher KU, Wetter J, Marsh K, Lemaire M, Porsolt RD, Bennani YL, Sullivan JP, Cowart MD, Decker MW, Hancock AA. Pharmacological properties of ABT-239 [4-(2-{2-[(2R)-2-Methylpyrrolidinyl]ethyl}-benzofuran-5-yl)benzonitrile]: II. Neurophysiological characterization and broad preclinical efficacy in cognition and schizophrenia of a potent and selective histamine H3 receptor antagonist. J Pharmacol Exp Ther. 2005;313:176–90.PubMedCrossRefGoogle Scholar
  124. 124.
    Ligneau X, Perrin D, Landais L, Camelin JC, Calmels TP, Berrebi-Bertrand I, Lecomte JM, Parmentier R, Anaclet C, Lin JS, Bertaina-Anglade V, la Rochelle CD, d’Aniello F, Rouleau A, Gbahou F, Arrang JM, Ganellin CR, Stark H, Schunack W, Schwartz JC. BF2.649 [1-{3-[3-(4-Chlorophenyl)propoxy]propyl}piperidine, hydrochloride], a nonimidazole inverse agonist/antagonist at the human histamine H3 receptor: preclinical pharmacology. J Pharmacol Exp Ther. 2007;320:365–75.PubMedCrossRefGoogle Scholar
  125. 125.
    Medhurst AD, Atkins AR, Beresford IJ, Brackenborough K, Briggs MA, Calver AR, Cilia J, Cluderay JE, Crook B, Davis JB, Davis RK, Davis RP, Dawson LA, Foley AG, Gartlon J, Gonzalez MI, Heslop T, Hirst WD, Jennings C, Jones DN, Lacroix LP, Martyn A, Ociepka S, Ray A, Regan CM, Roberts JC, Schogger J, Southam E, Stean TO, Trail BK, Upton N, Wadsworth G, Wald JA, White T, Witherington J, Woolley ML, Worby A, Wilson DM. GSK189254, a novel H3 receptor antagonist that binds to histamine H3 receptors in Alzheimer’s disease brain and improves cognitive performance in preclinical models. J Pharmacol Exp Ther. 2007;321:1032–45.PubMedCrossRefGoogle Scholar
  126. 126.
    Nowak P, Bortel A, Dabrowska J, Biedka I, Slomian G, Roczniak W, Kostrzewa RM, Brus R. Histamine H3 receptor ligands modulate L-dopa-evoked behavioral responses and L-dopa derived extracellular dopamine in dopamine-denervated rat striatum. Neurotox Res. 2008;13:231–40.PubMedCrossRefGoogle Scholar
  127. 127.
    Swanger SA, Bassell GJ, Gross C. High-resolution fluorescence in situ hybridization to detect mRNAs in neuronal compartments in vitro and in vivo. Methods Mol Biol. 2011;714:103–23.PubMedCrossRefGoogle Scholar
  128. 128.
    Yanovsky Y, Li S, Klyuch BP, Yao Q, Blandina P, Passani MB, Lin JS, Haas HL, Sergeeva OA. L-Dopa activates histaminergic neurons. J Physiol. 2011;589:1349–66.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Arrang JM, Drutel G, Schwartz JC. Characterization of histamine H3 receptors regulating acetylcholine release in rat entorhinal cortex. Br J Pharmacol. 1995;114:1518–22.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Blandina P, Giorgetti M, Bartolini L, Cecchi M, Timmerman H, Leurs R, Pepeu G, Giovannini MG. Inhibition of cortical acetylcholine release and cognitive performance by histamine H3 receptor activation in rats. Br J Pharmacol. 1996;119:1656–64.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Bacciottini L, Passani MB, Giovannelli L, Cangioli I, Mannaioni PF, Schunack W, Blandina P. Endogenous histamine in the medial septum-diagonal band complex increases the release of acetylcholine from the hippocampus: a dual-probe microdialysis study in the freely moving rat. Eur J Neurosci. 2002;15:1669–80.PubMedCrossRefGoogle Scholar
  132. 132.
    Mochizuki T, Okakura-Mochizuki K, Horii A, Yamamoto Y, Yamatodani A. Histaminergic modulation of hippocampal acetylcholine release in vivo. J Neurochem. 1994;62:2275–82.PubMedCrossRefGoogle Scholar
  133. 133.
    Prast H, Tran MH, Fischer H, Kraus M, Lamberti C, Grass K, Philippu A. Histaminergic neurons modulate acetylcholine release in the ventral striatum: role of H3 histamine receptor. Naunyn Schmiedebergs Arch Pharmacol. 1999;360:558–64.PubMedCrossRefGoogle Scholar
  134. 134.
    Passani MB, Cangioli I, Baldi E, Bucherelli C, Mannaioni PF, Blandina P. Histamine H3 receptor-mediated impairment of contextual fear conditioning and in-vivo inhibition of cholinergic transmission in the rat basolateral amygdala. Eur J Neurosci. 2001;14:1522–32.PubMedCrossRefGoogle Scholar
  135. 135.
    Bevan MD, Magill PJ, Terman D, Bolam JP, Wilson CJ. Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci. 2002;25:525–31.PubMedCrossRefGoogle Scholar
  136. 136.
    Naito A, Kita H. The cortico-pallidal projection in the rat: an anterograde tracing study with biotinylated dextran amine. Brain Res. 1994;653:251–7.PubMedCrossRefGoogle Scholar
  137. 137.
    Anaya-Martinez V, Martinez-Marcos A, Martinez-Fong D, Aceves J, Erlij D. Substantia nigra compacta neurons that innervate the reticular thalamic nucleus in the rat also project to striatum or globus pallidus: implications for abnormal motor behavior. Neuroscience. 2006;143:477–86.PubMedCrossRefGoogle Scholar
  138. 138.
    Morales-Figueroa GE, Márquez-Gómez R, González-Pantoja R, Escamilla-Sánchez J, Arias-Montaño JA. Histamine H3 receptor activation counteracts adenosine A2A receptor-mediated enhancement of depolarization-evoked [3H]-GABA release from rat globus pallidus synaptosomes. ACS Chem Neurosci. 2014;5:637–45.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Osorio-Espinoza A, Alatorre A, Ramos-Jiménez J, Garduño-Torres B, García-Ramírez M, Querejeta E, Arias-Montaño JA. Pre-synaptic histamine H3 receptors modulate glutamatergic transmission in rat globus pallidus. Neuroscience. 2011;176:20–31.PubMedCrossRefGoogle Scholar
  140. 140.
    Mayfield R, Suzuki F, Zahniser NR. Adenosine A2a receptor modulation of electrically evoked endogenous GABA release from slices of rat globus pallidus. J Neurochem. 1993;60:2334–7.PubMedCrossRefGoogle Scholar
  141. 141.
    Mayfield D, Larson G, Orona RA, Zahniser NR. Opposing actions of adenosine A2a and dopamine D2 receptor activation on GABA release in the basal ganglia: evidence for an A2a/D2 receptor interaction in globus pallidus. Synapse. 1996;22:132–8.CrossRefGoogle Scholar
  142. 142.
    Shindou T, Nonaka H, Richardson PJ, Mori A, Kase H, Ichimura M. Presynaptic adenosine A2A receptors enhance GABAergic synaptic transmission via a cyclic AMP dependent mechanism in the rat globus pallidus. Br J Pharmacol. 2002;136:296–302.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Shindou T, Nonaka H, Richardson PJ, Mori A, Kase H, Ichimura M. Adenosine modulates the striatal GABAergic inputs to the globus pallidus via adenosine A2A receptors in rats. Neurosci Lett. 2003;352:167–70.PubMedCrossRefGoogle Scholar
  144. 144.
    Ferrada C, Ferré S, Casadó V, Cortés A, Justinova Z, Barnes C, Canela EI, Goldberg SR, Leurs R, Lluis C, Franco R. Interactions between histamine H3 and dopamine D2 receptors and the implications for striatal function. Neuropharmacology. 2008;55:190–7.PubMedCrossRefGoogle Scholar
  145. 145.
    Ferrada C, Moreno E, Casadó V, Bongers G, Cortés A, Mallol J, Canela EI, Leurs R, Ferré S, Lluís C, Franco R. Marked changes in signal transduction upon heterodimerization of dopamine D1 and histamine H3 receptors. Br J Pharmacol. 2009;157:64–75.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Morales-Figueroa G-E, R. González-Pantoja R, J. Escamilla-Sánchez J, Arias-Montaño J-A. Functional interaction between histamine H3 and adenosine A2A receptors in rat striatopallidal nerve terminals. 2015; Program No. 119.04/A75. Neuroscience Meeting Planner. Chicago, IL: Society for Neuroscience. Online.Google Scholar
  147. 147.
    Chen L, Chan SC, Yung WH. Rotational behavior and electrophysiological effects induced by GABAB receptor activation in rat globus pallidus. Neuroscience. 2002;114:417–25.PubMedCrossRefGoogle Scholar
  148. 148.
    Anichtchik OV, Huotari M, Peitsaro N, Haycock JW, Männistö PT, Panula P. Modulation of histamine H3 receptors in the brain of 6-hydroxydopamine-lesioned rats. Eur J Neurosci. 2000;12:3823–32.PubMedCrossRefGoogle Scholar
  149. 149.
    Anichtchik OV, Rinne JO, Kalimo H, Panula P. An altered histaminergic innervation of the substantia nigra in Parkinson’s disease. Exp Neurol. 2000;163:20–30.PubMedCrossRefGoogle Scholar
  150. 150.
    Da Cunha C, Boschen SL, Gómez-A A, Ross EK, Gibson WS, Min HK, Lee KH, Blaha CD. Toward sophisticated basal ganglia neuromodulation: Review on basal ganglia deep brain stimulation. Neurosci Biobehav Rev. 2015;58:186–210. doi: 10.1016/j.neubiorev.2015.02.003.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Zhou FM, Lee CR. Intrinsic and integrative properties of substantia nigra pars reticulata neurons. Neuroscience. 2011;198:69–94.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Esbenshade TA, Strakhova MI, Carr TL, Sharma R, Witte DG, Yao BB, Miller TR, Hancock AA. Differential CNS expression and functional activity of multiple human H3 receptor isoforms. Inflamm Res. 2006;55 Suppl 1:S38–9.PubMedCrossRefGoogle Scholar
  153. 153.
    Threlfell S, Cragg SJ, Kalló I, Turi GF, Coen CW, Greenfield SA. Histamine H3 receptors inhibit serotonin release in substantia nigra pars reticulata. J Neurosci. 2004;24:8704–10.PubMedCrossRefGoogle Scholar
  154. 154.
    Corvaja N, Doucet G, Bolam JP. Ultrastructure and synaptic targets of the raphe-nigral projection in the rat. Neuroscience. 1993;55:417–27.PubMedCrossRefGoogle Scholar
  155. 155.
    Moore RY, Halaris AE, Jones BE. Serotonin neurons of the midbrain raphe: ascending projections. J Comp Neurol. 2004;180:417–38.CrossRefGoogle Scholar
  156. 156.
    Jin CY, Kalimo H, Panula P. The histaminergic system in human thalamus: correlation of innervation to receptor expression. Eur J Neurosci. 2002;15:1125–38.PubMedCrossRefGoogle Scholar
  157. 157.
    Rouleau A, Héron A, Cochois V, Pillot C, Schwartz JC, Arrang JM. Cloning and expression of the mouse histamine H3 receptor: evidence for multiple isoforms. J Neurochem. 2004;90:1331–8.PubMedCrossRefGoogle Scholar
  158. 158.
    Garduño-Torres B, Treviño M, Gutiérrez R, Arias-Montaño JA. Pre-synaptic histamine H3 receptors regulate glutamate, but not GABA release in rat thalamus. Neuropharmacology. 2007;52:527–35.PubMedCrossRefGoogle Scholar
  159. 159.
    Arrang JM, Garbarg M, Schwartz JC. Autoregulation of histamine release in brain by presynaptic H3-receptors. Neuroscience. 1985;15:553–62.PubMedCrossRefGoogle Scholar
  160. 160.
    Márquez-Gómez R, Gutierrez-Rodelo C, Olivares-Reyes J-A, Arias-Montaño J-A. Adenosine A2A and histamine H3 receptors gather to modulate intra-striatal GABAergic transmission. 2015; Program No. 119.05/A76. Neuroscience Meeting Planner. Chicago, IL: Society for Neuroscience. Online.Google Scholar
  161. 161.
    Bell MI, Richardson PJ, Lee K. Histamine depolarizes cholinergic interneurons in the rat striatum via a H1-receptor mediated action. Br J Pharmacol. 2000;131:1135–42.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Leurs R, Traiffort E, Arrang JM, Tardivel-Lacombe J, Ruat M, Schwartz JC. Guinea pig histamine H1 receptor. II. Stable expression in Chinese hamster ovary cells reveals the interaction with three major signal transduction pathways. J Neurochem. 1994;62:519–27.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ricardo Márquez-Gómez
    • 1
  • Ana-Maricela García-Gálvez
    • 1
  • Guadalupe-Elide Morales-Figueroa
    • 1
  • José-Antonio Arias-Montaño
    • 1
    Email author
  1. 1.Departamento de FisiologíaBiofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPNCiudad de MéxicoMexico

Personalised recommendations