Skip to main content

Art of Modeling in Contact Mechanics

  • Chapter
  • First Online:

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 570))

Abstract

In this chapter, we will first address general issues of the art and craft of modeling—contents, concepts, methodology. Then, we will focus on modeling in contact mechanics, which will give the opportunity to discuss these issues in connection with non-smooth problems. It will be shown that the non-smooth character of the contact laws raises difficulties and specificities at every step of the modeling process. A wide overview will be given on the art of modeling in contact mechanics under its various aspects: contact laws, their mechanical basics, various scales, underlying concepts, mathematical analysis, solvers, identification of the constitutive parameters, and validation of the models. Every point will be illustrated by one or several examples.

The author is grateful to Prof. Marius Cocou for his very constructive comments on the mathematical aspects and Prof. Alfredo Soldati for our very interesting discussion on the general topic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alart, P., & Curnier, A. (1991). A mixed formulation for frictional contact problems prone to Newton like solution methods. CMAME, 92(3), 353–375.

    MathSciNet  MATH  Google Scholar 

  2. Anciaux, G., & Molinari, J.-F. (2009). Contact mechanics at the nanoscale, a 3D multiscale approach. IJNME, 79(9), 1041–1067.

    Article  MATH  Google Scholar 

  3. Anciaux, G., Ramisetti, S. B., & Molinari, J.-F. (2012). A finite temperature bridging domain method for MD-FE coupling and application to a contact problem. CMAME, 205–208, 204–212.

    Google Scholar 

  4. Andersson, L.-E. (1991). A quasistatic frictional problem with normal compliance. Nonlinear Analysis Theory Methods Application, 16, 347–369.

    Article  MathSciNet  MATH  Google Scholar 

  5. Andersson, L. E. (2000). Existence results for quasistatic contact problems with Coulomb friction. Applied Mathematics Optimum, 42(2), 169–202.

    Article  MathSciNet  MATH  Google Scholar 

  6. Archard, J. F. (1953). Contact and rubbing of flat surface. Journal of Applied Physics, 24(8), 981–988.

    Article  Google Scholar 

  7. Archard, J. F., & Hirst, W. (1956). The wear of metals under unlubricated conditions. Proceeding of Royal Society, A–236, 397–410.

    Article  Google Scholar 

  8. Archard, J. F. (1957). Elastic deformation and the laws of friction. Proceedings of Royal Society London A, 243, 190–205.

    Article  Google Scholar 

  9. Archard, J. F. (1974). Surface topography and tribology. Tribology International, 7, 213–220.

    Article  Google Scholar 

  10. Ballard, P. (1999). A counter-example to uniqueness in quasi-static elastic contact problems with friction. International Journal of Enginering Science, 37, 163–178.

    Article  MathSciNet  MATH  Google Scholar 

  11. Ballard, P. (2000). The dynamics of discrete mechanical systems with perfect unilateral constraints. Archive for Rational Mechanics Analysis, 154, 199–274.

    Article  MathSciNet  MATH  Google Scholar 

  12. Ballard, P., & Basseville, St. (2005). Existence and uniqueness for dynamical unilateral contact with Coulomb friction: a model problem. Mathematical Modelling and Numerical Analysis, 39(1), 59–77.

    Article  MathSciNet  MATH  Google Scholar 

  13. Berthier, Y. (2005). Third body reality - Consequences and use of the third body concept to solve a friction and wear problems, in Wear. Mechanisms and Practice, Wiley: Materials.

    Google Scholar 

  14. Bizzarri, A., & Cocco, M. (2003). Slip-weakening behavior during the propagation of dynamic ruptures obeying rate and state dependent friction laws. Journal of Geophysical Research, 108(B8), 2373.

    Article  Google Scholar 

  15. Bouchitte, G., Lidouh, A., Michel, J.-C., Suquet, P. (1992) Might boundary homogenization help to understand friction. In Curnier (Ed.), Proceedings of Contact Mechanics International Symposium. Presses Polytechniques: Lausanne.

    Google Scholar 

  16. Chabrand, P., Dubois, F., & Raous, M. (1998). Comparison of various numerical methods for solving unilateral contact problems with friction. Mathematical and Computer Modelling, 28(4–8), 97–108.

    Article  MATH  Google Scholar 

  17. Campillo, M., & Ionescu, I. R. (1997). Initiation of antiplane shear instability under slip dependent friction. Journal of Geophysical Research, 102(B9), 20363–20371.

    Article  Google Scholar 

  18. Cherepanov, G. P., Balakin, A. S., & Ivanova, V. S. (1995). Fractal fracture mechanics a review. Engineering Fracture Mechanics, 51(6), 997–1033.

    Article  Google Scholar 

  19. Cho, J., Junge, T., Molinari, J.-F., & Anciaux, G. (2015). Toward a 3D coupled atomistic and discrete dislocation dynamics simulation: dislocation core structures and Peierls stresses with several character angles in FCC aluminum. Advanced of Modelling Simulation Engineering, 2(12).

    Google Scholar 

  20. Christensen, P. W., Klarbring, A., Pang, J. S., & Stromberg, N. (1998). Formulation and comparison of algorithms for frictional contact problems. International Journal of Numerical Methods Engineering, 42, 145–173.

    Article  MathSciNet  MATH  Google Scholar 

  21. Cocou, M. (1984). Existence of solutions of Signorini problems with friction. International Journal of Engineering Science, 22(5), 567–575.

    Article  MathSciNet  Google Scholar 

  22. Cocou, M., Pratt, E., Raous, M. (1995) Existence d’une solution du problème quasi statique de contact unilateral avec frottement non local, CRAS Paris, 320 Serie I, pp. 1413–1417.

    Google Scholar 

  23. Cocou, M., Pratt, E., & Raous, M. (1996). Formulation and approximation of quasistatic frictional contact. International Journal of Engineering Science, 34(7), 783–798.

    Article  MathSciNet  MATH  Google Scholar 

  24. Cocou, M., Pratt, E., & Raous, M. (1998). Constructive aspects of functional analysis for the treatment of frictional contact. Mathematical and Computer Modelling, 28(4–8), 109–120.

    Article  MathSciNet  MATH  Google Scholar 

  25. Cocou, M., Cangémi, L., Raous, M. (1999) Approximation results for a class of quasistatic contact problems including adhesion and friction, In Argoul-Frémond-Nguyen (Eds.) Proc. IUTAM Symposium on Variations de domaines et frontières libres en mécanique des solides, pp. 211–218. Kluwer.

    Google Scholar 

  26. Cocou, M., & Rocca, R. (2000). Existence results for unilateral quasistatic contact problems with friction and adhesion. Mathematical Modelling and Numerical Analysis, 34, 981–1001.

    Article  MathSciNet  MATH  Google Scholar 

  27. Cocou, M., Raous, M. (2001) Implicit variational inequalities arising in frictional contact mechanics : analysis and numerical solutions for quasistatic problems, In Prof. G. Fichera, Gilbert-Panagiotopoulos-Pardalos (Eds) From convexity to non-convexity dedicated to memory, pp. 255–267. Kluwer: Dordrecht.

    Google Scholar 

  28. Cocou, M. (2002). Existence of solutions of a dynamic Signorini’s problem with nonlocal friction in viscoelasticity. ZAMP, 53, 1099–1109.

    Article  MathSciNet  MATH  Google Scholar 

  29. Cocou, M., & Scarella, G. (2006). Analysis of a dynamic unilateral contact problem for a cracked viscoelastic body. ZAMP, 57, 523–546.

    Article  MathSciNet  MATH  Google Scholar 

  30. Cocou, M., Schryve, M., & Raous, M. (2010). A dynamics unilateral contact problem with adhesion and friction in viscoelasticity. ZAMP, 61, 721–743.

    Article  MathSciNet  MATH  Google Scholar 

  31. Cottle, R. W., Giannessi, F., & Lions, P.-L. (Eds.). (1979). Variational inequalities and complementary problems in mathematical physics and economics. New York: Wiley.

    Google Scholar 

  32. Coulomb, C. A. (1785). Théorie de machines simples. Mémoire de Mathémathiques et de Physique de l’Académie Royale, 10, 161–342.

    Google Scholar 

  33. Dautray, R., Lions, J.-L. (1987) Analyse mathématique et calcul numérique pour les sciences de l’ingénieur, 1302 p. Masson, Paris.

    Google Scholar 

  34. De Laurenzis, L., & Wriggers, P. (2013). Computational homogenization of rubber friction on rough rigid surfaces. Computing and Mathematics Science, 77, 264–284.

    Article  Google Scholar 

  35. Del Piero, G., & Raous, M. (2010). A unified model for adhesive interfaces with damage, viscosity and friction. European of Journal Mechanics - A/Solids, 29(4), 496–507.

    Article  MathSciNet  Google Scholar 

  36. Del Piero, G., & Pampolini, G. (2012). The influence of viscosity on the response of open-cell polymeric foams in uniaxial compression: experiments and theoretical model. Continuum Mechanics and Thermodynamics, 24, 181–199.

    Article  Google Scholar 

  37. Demkowicz, L., & Oden, J. T. (1982). On some existence and uniqueness results in contcat problems with non local friction. Nonlinear Analysis: Theory Methods Applications, 6(10), 1075–1093.

    Article  MathSciNet  MATH  Google Scholar 

  38. Descartes, R. (1637) Discours de la méthode pour bien conduire sa raison et chercher la vérité dans les Sciences, Imprimerie Ian Maire, La Haye, 8 June 1637

    Google Scholar 

  39. Dumont, S., Lebon, F., Raffa, M.L., Rizzoni, R., Welemane, H. (2016) Multiscale Modeling of Imperfect Interfaces and Applications, In Ibrahimbegovic (Ed.) Computational Methods for Solids and Fluids, CMAME, vol. 41, pp. 81-122.

    Google Scholar 

  40. Duvaut, G., & Lions, J.-L. (1972). Les inéquations en mécanique et en physique. Paris: Dunod.

    MATH  Google Scholar 

  41. Duvaut, G. (1980). Equilibre d’un solide élastique avec contact unilatéral et frottememt de Coulomb. CRAS, Paris, 290A, 263–265.

    MathSciNet  MATH  Google Scholar 

  42. Drosopouilos, G. A., Wriggers, P., & Stavroulakis, G. (2014). A multi-scale computational method including contact for the analysis of damage in composite materials. Computational Materials Sciences, 12(95), 522–535.

    Article  Google Scholar 

  43. Eck, C., & Jaruseck, J. (1998). Existence results for the static contact problem with Coulomb friction. Mathematical Models Methods in Applied Sciences, 8, 445–468.

    Article  MathSciNet  MATH  Google Scholar 

  44. Fichera, G. (1964). Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Memorie della Accad. Naz.dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, 8(7), n2, 91–140.

    Google Scholar 

  45. Fremond, M. (1987). Adherence des solides. Journal of Mechanics Theoretical Applications, 6(3), 383–407.

    MathSciNet  MATH  Google Scholar 

  46. Glowinski, R., Lions, J.-L., & Trémolieres, R. (1976). Analyse numérique des inéquations variationnelles. Paris: Dunod.

    MATH  Google Scholar 

  47. Greenwood, J. A., & Williamson, J. B. (1966). Contact of nominally flat surfaces. Proceedings of the Royal Society London A, 255, 300–319.

    Article  Google Scholar 

  48. Hyun, S., Pei, L., & Molinari, J.-F. (2004). Finite-element analysis of contact between elastic self-affine surfaces. Physical Review E, 70(2).

    Google Scholar 

  49. Ida, Y. (1972). Cohesive force across the tip of a longitudinal shear crack and Griffith’s specific surface energy. Journal of Geophysical Research, 77, 3796–3805.

    Article  Google Scholar 

  50. Jarusek, J. (1983). Contact problems with bounded friction coercive case. Czechoslovak Mathematics Journal, 33(108), 237–261.

    MathSciNet  MATH  Google Scholar 

  51. Jarusek, J. (1996). Dynamic contact problems with given friction for viscoelstic bodies. Czechoslovak Mathematics Journal, 46(121), 475–487.

    MathSciNet  MATH  Google Scholar 

  52. Jean, M., Moreau, J.-J. (1987) Dynamics in the presence of unilateral contact and dry friction: a numerical approach. In Unilateral problems in structural analysis, Del Piero-Maceri (eds), CISM Course, vol. 304. Springer: Wien (1987).

    Google Scholar 

  53. Jean, M. (1999). The Non Smooth contact dynamics method. Computer Methods in Applied Mechanics Engineering, 177, 235–257.

    Article  MathSciNet  MATH  Google Scholar 

  54. Jean, M., Acary, V., & Monerie, Y. (2001). Non-smooth contact dynamics approach of cohesive materials. Philosiphical Transaction of the Royal Society London (A), 359, 2497–2518.

    Article  MathSciNet  MATH  Google Scholar 

  55. Johnson, K. L. (1985). Contact mechanics. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  56. Junge, T., & Molinari, J.-F. (2014). Plastic activity in nanoscratch molecular dynamics simulations of pure aluminium. International Journal of Plasticity, 53, 90–106.

    Article  Google Scholar 

  57. Karray, M.A., Barbarin, S., Raous, M. (2004) Traitement de la liaison béton-acier par un modèle d’interface couplant adhésion et frottement, Annales Maghrébines de l’Ingénieur, 18(2).

    Google Scholar 

  58. Kikuchi, N., & Oden, J. T. (1988). Contact problems in elasticity : a study of variational inequalities and finite element methods. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  59. Klarbring, A., Mikelic, A., & Shillor, M. (1989). On friction problems with normal compliance. Nonlinear Analysis: Theory, Methods and Applications, 13, 935–955.

    Article  MathSciNet  MATH  Google Scholar 

  60. Klarbring, A. (1990). Examples of non uniqueness and non existence of solutions to quasistatic contact problem with friction. Ingegner.-Archive, 60, 529–541.

    Google Scholar 

  61. Klarbring, A., & Björkman, G. (1988). A mathematical programming approach to contact problems with friction and varying surfaces. Computers and Structures, 30(5), 1185–1198.

    Article  MATH  Google Scholar 

  62. Kuttler, K. L. (1997). Dynamic friction contact problems for general normal and friction laws. Nonlinear Analysis: Theory Methods and Applications, 28(3), 559–575.

    Article  MathSciNet  MATH  Google Scholar 

  63. Laursen, T. A. (2003). Computational contact and impact mechanics. Berlin: Springer.

    Book  Google Scholar 

  64. Lebon, F., & Raous, M. (1992). Multibody contact problem including friction in structural assembly. Computers and Structures, 43(5), 925–934.

    Article  MATH  Google Scholar 

  65. Lebon, F., Raous, M., Rosu, I. (2007) Multigrid methods for unilateral contact problems with friction. In Wriggers-Nackenhorst (Eds.) IUTAM-Symposium on Computational Methods in Contact Mechanics, pp. 1–16. Springer: Berlin.

    Google Scholar 

  66. Licht, Ch., Pratt, E., Raous, M. (1991) Remarks on a numerical method for unilateral contact including friction, International Series Numerical Mathematics, vol. 101, pp. 129-144 Birkhäuser: Basel.

    Google Scholar 

  67. Licht, Ch., & Michaille, G. (1997). A modelling of elastic adhesive bonded joints. Advances in Mathematical Sciences and Applications, 7, 711–740.

    MathSciNet  MATH  Google Scholar 

  68. Liu, C. H., Hofstetter et, G., & Mang, H. A. (1994). 3D finite element analysis of rubber-like materials at finite strains. Engineering with Computers, 11.

    Google Scholar 

  69. Lorenz, B., & Persson, B. N. J. (2009). Interfacial separation between solids with randomly surfaces: comparison of experiment with theory. Journal of Physics: Condensed Matter, 21, 1–6.

    Google Scholar 

  70. Martins, J. A. C., & Oden, J. T. (1987). Existence and uniqueness results for dynamic contact problems with nonlinear normal and tangential interface laws. Nonlinear Analysis: Theory Methods and Application, 11(3), 407–428.

    Article  MathSciNet  MATH  Google Scholar 

  71. Martins, J. A. C., & Oden, J. T. (1988). Corrigendum of [70]. Nonlinear Analysis: Theory, Methods and Applications, 12(7), 747.

    Article  MathSciNet  MATH  Google Scholar 

  72. Martins, J. A. C., Barbarin, S., Raous, M., & Pinto da Costa, A. (1999). Dynamic stability of finite dimensional linearly elastic systems with unilateral contact and Coulomb friction. Computers Methods in Applied Mechanics Engineering, 177(3–4), 289–328.

    Article  MathSciNet  MATH  Google Scholar 

  73. Metropolis, N., & Ulam, S. (1949). The Monte Carlo method. Journal of the American Statistical Association, 44(247), 335–341.

    Article  MathSciNet  MATH  Google Scholar 

  74. Monerie, Y., & Raous, M. (2000). A model coupling adhesion to friction for the interaction between a crack and a fiber/matrix interface. ZAMM, 80, 205–209.

    Article  MATH  Google Scholar 

  75. Moreau, J.-J. (1985). Standard inelastic shocks and the dynamics of unilateral constraints, in: Unilateral Problems. In Structural Analysis & Del Piero-Maceri (Eds.), CISM courses (Vol. 288, pp. 173–221). Wien New York: Springer.

    Google Scholar 

  76. Moreau, J.-J. (1988) In Moreau-Panagiotopoulos (Eds) Unilateral Contact and Dry Friction in Finite Freedom Dynamics, vol. 77, pp. 1–82.

    Google Scholar 

  77. Moreau, J.-J., & Panagiotopoulos, P. D. (Eds.). (1988). Non smooth mechanics and applications (Vol. 302)., CISM courses and lectures Wien: Springer.

    Google Scholar 

  78. Munoz-Rivera, J., & Racke, R. (1998). Multidimensional contact problems in thermoelasticity. SIAM Journal on Applied Mathematics, 58(4), 1307–1337.

    Article  MathSciNet  MATH  Google Scholar 

  79. Necas, J., Jarusek, J., & Haslinger, J. (1980). On the solution of the variational inequality to the Signorini problem with small friction. Boll UMI, 5(17–B), 796–811.

    MathSciNet  MATH  Google Scholar 

  80. NGuyen, Q. S. (1994). Bifurcation and stability in dissipative media (plasticity, friction, fracture). Applied Mechanics Review, 47.

    Google Scholar 

  81. Pampolini, G., & Del Piero, G. (2008). Strain localization in open-cell polyurethane foams: experiments and theoretical model. Journal of Mechanics of Materials and Structures, 3, 969–981.

    Article  MATH  Google Scholar 

  82. Pampolini, G., & Raous, M. (2014). Nonlinear elasticity, viscosity and damage in open-cell polymeric foams. Archive of Applied Mechanics, 84, 1861–1881.

    Article  Google Scholar 

  83. Panagiotopoulos, P. D. (1985). Inequality problems in Mechanics, convex and non convex energy functions and Hemivariational inequalities. Boston Basel: Birkhäuser.

    MATH  Google Scholar 

  84. Pei, L., Hyun, S., & Molinari, J.-F. (2005). Finite element modeling of elasto-plastic contact between rough surfaces. Journal of the Mechanics and Physics of Solids, 53(11), 2385–2409.

    Article  MATH  Google Scholar 

  85. Persson, B. N. J. (2007). Relation between interfacial separation and load: a general theory of contact mechanics. Physical Review Letters, 99(12), s.

    Article  Google Scholar 

  86. Pfeiffer, F., & Glocker, Ch. (1996). Multibody dynamics with unilateral contacts. New York: Wiley.

    Book  MATH  Google Scholar 

  87. Pfeiffer, F. (2009). Mechanical system dynamics. Berlin: Springer.

    MATH  Google Scholar 

  88. Pfeiffer, F., & Schindler, Th. (2015). Introduction to dynamics. Berlin: Springer.

    Book  Google Scholar 

  89. Ramisetti, S. B., Anciaux, G., & Molinari, J.-F. (2014). A concurrent atomistic and continuum coupling method with applications to thermo-mechanical problems. International Journal on Numerical Methods Engineering, 97, 707–738.

    Article  Google Scholar 

  90. Raous, M. (1979) In Cottle-Gianessi-Lions (Eds) On Two Variational Inequalities Arising from a Periodic Viscoelastic Unilateral Problem, pp 285–302.

    Google Scholar 

  91. Raous M. (Ed) (1988) Numerical methods in mechanics of contact involving friction, Special Issue J. Méca. Th. Appl., 7(suppl. n1).

    Google Scholar 

  92. Raous, M., Chabrand, P., Lebon, F. (1988) In Raous (Ed.) Numerical Methods for Frictional Contact Problems and Applications, vol.91, pp. 111–128.

    Google Scholar 

  93. Raous, M., Barbarin, S. (1992) Preconditioned conjugate gradient method for a unilateral problem with friction, In Curnier (Ed.) Contact Mechanics, pp. 423-432. Press. Polytechnic University: Romandes.

    Google Scholar 

  94. Raous, M., Sage, M. (1992) Numerical simulation of the behavior of surface asperities for metal forming. In Chenot-Wood- Zienkiewicz (Eds.) Numerical Methods in Industrial Forming Processes, pp. 75–80. Balkema.

    Google Scholar 

  95. Raous, M. (1999) Quasistatic Signorini problem with Coulomb friction and coupling to adhesion. In Wriggers-Panagiotopoulos (Eds.) CISM Courses and Lectures New Developments in Contact Problems, vol. 384, pp. 101–178. Springer: Wien-New York.

    Google Scholar 

  96. Raous, M., Cangemi, L., & Cocou, M. (1999). A consistent model coupling adhesion, friction and unilateral contact. Computer Methods in Applied Mechanics and Engineering, 177(3–4).

    Google Scholar 

  97. Raous, M. (2001) Constitutive models and numerical methods for frictional contact. In Lemaitre (Ed.) Handbook of Materials BehaviorNon linear Models and Properties, pp. 777–786. Academic Press: Cambridge.

    Google Scholar 

  98. Raous, M., Barbarin, S., Vola, D. (2002) Numerical characterization and computation of dynamic instabilities for frictional contact problems. In Martins-Raous (Eds.) Friction and instabilities, CISM Courses and Lectures, vol. 457, pp. 233–292. Springer: Wien-New York.

    Google Scholar 

  99. Raous, M., & Monerie, Y. (2002). Unilateral contact, friction and adhesion in composite materials: 3D cracks in composite material. In Contact Mechanics & Martins-Monteiro Marques (Eds.), Coll (pp. 333–346). Solid Mech. Appl.: Kluwer.

    Google Scholar 

  100. Raous, M., Schryve, M., Cocou, M. (2006) Restorable adhesion and friction. In Baniotopoulos (Ed.) Nonsmooth/Nonconvex Mechanics with Applications in Engineering, pp. 165-172. Ziti Publisher: Thessaloniki.

    Google Scholar 

  101. Raous, M., & Karray, M. A. (2009). Model coupling friction and adhesion for steel-concrete interfaces. International Journal of Computer Applications in Techonlogy, 34(1), 42–51.

    Article  Google Scholar 

  102. Raous, M., Festa, G., Vilotte, J.-P., Henninger, C. (2010) Adhesion and friction for fault interfaces in geophysics, Keynote lecture. In Mini-Symposium Computer Contact Mechanics, IV European Conference Computer Mechanics ECCOMAS (Solid Structure Coupled Pbs Engineering). Paris, 17-21 May 2010.

    Google Scholar 

  103. M. Raous, Interface models coupling adhesion and friction, Them. Issue: Surface mechanics: facts and numerical models, CRAS Paris, 339, 491-501, 2011.

    Google Scholar 

  104. Rizzoni, R., Dumont, S., Lebon, F., & Sacco, E. (2014). Higher order model for soft and hard elastic interfaces. International Journal on Solids Structures, 51, 4137–4148.

    Article  Google Scholar 

  105. Rocca, R., & Cocou, M. (2001). Existence and approximation of a solution to quasistatic problem with local friction. International Journal of Engineering Science, 39(11), 1233–1255.

    Article  MathSciNet  MATH  Google Scholar 

  106. Rocca, R., & Cocou, M. (2001). Numerical analysis of quasi-static unilateral contact problems with local friction. SIAM Journal on Numerical Analysis, 39(4), 1324–1342.

    Article  MathSciNet  MATH  Google Scholar 

  107. Ruina, A. L. (1983). Slip instability and state variable friction laws. Journal of Geophysical Research, 88(10), 359–370.

    Google Scholar 

  108. Rutherford, A. (1978). Mathematical modelling techniques (p. 269). New York: Dover Publications, inc.

    Google Scholar 

  109. Sauer, R. A. (2016). A survey of computational models for adhesion. The Journal of Adhesion, 92(2), 81–120.

    Article  Google Scholar 

  110. Shillor, M., Sofonea, M., & Telega, J.J. (2004). Models and analysis of quasistatic contact. Lecture Notes in Physics, 655.

    Google Scholar 

  111. Serpilli, M. (2015). Mathematical Modeling of weak and strong piezoelectric interfaces. Journal of Elasticity, 121, 235–254.

    Article  MathSciNet  MATH  Google Scholar 

  112. Signorini, A. (1959). Questioni di elasticita non linearizzata e semi-linearizzata. Rend. di Matem. delle sue appl., 18,

    Google Scholar 

  113. Simo, J. C., & Taylor, R. L. (1991). Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Computer Methods in Applied Mechanics and Engineering, 85, 4.

    Article  MathSciNet  MATH  Google Scholar 

  114. Simo, J. C., & Laursen, T. A. (1992). An augmented Lagrangian treatment of contact problems involving friction. Computer Structures, 42(1), 97–116.

    Article  MathSciNet  MATH  Google Scholar 

  115. Spijker, P., Anciaux, G., & Molinari, J.-F. (2012). The effect of loading on surface roughness at the atomistic level. Computational Mechanics, 50, 273–283.

    Article  MATH  Google Scholar 

  116. Spijker, P., Anciaux, G., & Molinari, J.-F. (2013). Relations between roughness, temperature and dry sliding friction at the atomic scale. Tribology International, 59, 222–229.

    Article  Google Scholar 

  117. Sussman, T., & Bathe, K. J. (1987). A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Comput. Struct., 26(1–2).

    Google Scholar 

  118. Tabor, D. (1981). Friction-The present state of our understanding. Jouranl of Lubrication Technology Transation ASME, 103, 169–179.

    Google Scholar 

  119. Temizer, I., & Wriggers, P. (2008). A multiscale contact homogenization technique for the modeling of third bodies in the contact interface. Computational Methods of Applied Mechanics Engineering, 198, 377–396.

    Article  MathSciNet  MATH  Google Scholar 

  120. Uenishi, K., & Rice, J.R. (2003). Universal nucleation length for slip-weakening rupture instability under nonuniform fault loading. Journal of Geophysical Research, 108(B1).

    Google Scholar 

  121. Vilotte, J.-P., Festa, G., Raous, M., Henninger, C. (2009) Earthquake rupture with scale-dependant friction and damage interface law. In American Geophysical Union Fall Meeting, USA.

    Google Scholar 

  122. Vola, D., Pratt, E., Jean, M., & Raous, M. (1998). Consistent time discretization for a dynamical frictional contact problem and complementarity techniques. Rev. Europ. Elêments Finis, 7(1–3), 149–162.

    MATH  Google Scholar 

  123. Vola, D., Raous, M., & Martins, J. A. C. (1999). Friction and instability of steady sliding: squeal of a rubber/glass contact. International Journal of Numerical Methods Engineering, 46, 1699–1720.

    Article  MathSciNet  MATH  Google Scholar 

  124. Wagner, P., Wriggers, P., Klapproth, C., & Prange, C. (2015). Multiscale FEM approach for hysteresis friction of rubber on rough surfaces. Computational Methods of Applied Mechanics Engineering, 296, 150–168.

    Article  MathSciNet  Google Scholar 

  125. Wohlmuth, B. (2011). Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numerical, 569–734.

    Google Scholar 

  126. Wriggers, P., Vu Van, T., & Stein, E. (1990). Finite element formulation of large deformation impact-contact problems with friction. Computers and Structures, 37(3).

    Google Scholar 

  127. Wriggers, P., & Panagiotopoulos, P. D. (Eds.). (1999). New developments in contact problems (Vol. 384)., CISM Courses and Lectures Wien-New York: Springer.

    MATH  Google Scholar 

  128. Wriggers, P. (2002). Computational contact mechanics. New York: Willey.

    MATH  Google Scholar 

  129. Wriggers, P., & Laursen, T. A. (Eds.). (2007). Computational contact mechanics (Vol. 498)., CISM Courses and Lectures Wien-New York: Springer.

    MATH  Google Scholar 

  130. Wriggers, P., & Reinelt, J. (2009). Multi-scale approach for frictional contact of elastomers on rough rigid surfaces. Computational Methods of Applied Mechanics Engineering, 198(21–26), 1996–2008.

    Article  MathSciNet  MATH  Google Scholar 

  131. Yastrebov, V. A., Anciaux, G., & Molinari, J.-F. (2015). From infinitesimal to full contact between rough surfaces: evolution of the contact area. International Journal of Solids Structures, 52, 83–102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Raous .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Raous, M. (2017). Art of Modeling in Contact Mechanics. In: Pfeiffer, F., Bremer, H. (eds) The Art of Modeling Mechanical Systems. CISM International Centre for Mechanical Sciences, vol 570. Springer, Cham. https://doi.org/10.1007/978-3-319-40256-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40256-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40255-0

  • Online ISBN: 978-3-319-40256-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics