Skip to main content

Fascination of Making Models: Truth–Reality–Illusion?

  • Chapter
  • First Online:
Book cover The Art of Modeling Mechanical Systems

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 570))

  • 2071 Accesses

Abstract

Evidently, human thinking is based on an imagination of the surrounding world in which one is going to explore an abstraction—a model. Such a model, if successful, enables to understand what is really going on—reality, that is what we see and it might be the truth, but observation and imagination can also lead to confusion and illusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brandl, H., Johanni, R., & Otter, M. (1986). A very efficient algorithm for the simulation of robots and similar multibody systems. Proceedings IFAC Symposium Vienna/Austria (pp. 365–370).

    Google Scholar 

  2. Bremer, H. (1988). Über eine Zentralgleichung in der Dynamik. Zeitschr. Ang. Math. u. Mech. (ZAMM), 68, 307–311.

    Article  MATH  Google Scholar 

  3. Bremer, H. (1988). Dynamik und Regelung mechanischer Systeme. Stuttgart: Teubner.

    Book  MATH  Google Scholar 

  4. Bremer, H. (1999). On the dynamics of elastic multibody systems. Appl. Mech. Rev., 52(9), 275–303.

    Article  Google Scholar 

  5. Bremer, H. (2008). Elastic multibody systems—A direct ritz approach. Heidelberg: Springer.

    Google Scholar 

  6. Bremer, H. (2014). Multiple beam systems—How to obtain the PDEs/BCs? How to solve? Acta Mechanica, 225, 1883–1900.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bremer, H., & Pfeiffer, F. (1992). Elastische Mehrkörpersysteme. Stuttgart: Teubner.

    Google Scholar 

  8. Bresse, J. A. C. (1859). Cours de Méchanique Appliquée. Paris: Mallet Bachelier.

    MATH  Google Scholar 

  9. Bublath, J. (1990). Abenteuer Forschung, ZDF (2nd German Television).

    Google Scholar 

  10. Chetaev, N.G. (1961). The stability of motion. Oxford: Pergamon Press.

    Google Scholar 

  11. Die Pamir - Untergang eines Gross-Seglers (Doku), YouTube.

    Google Scholar 

  12. d’Alembert, J. (1757). Musicalische Setzkunst, nach den Lehrsätzen des Herrn Rameau. Leipzig: Breitkopf.

    Google Scholar 

  13. d’Alembert, J. (1758). traité de dynamique. 2nd ed., David, Paris.

    Google Scholar 

  14. de Lagrange, J. L. (1762). Essai sur une nouvelle méthode por déterminer les maxima et les minima des formules intégrales indéfinies, Miscellanea Taurinensia, 173–195, German translation by P. Stäckel (ed.): Variationsrechnung. Darmstadt: Wiss. Buchges.

    Google Scholar 

  15. de Lagrange, J. L. (1813–1815). Mécanique analytique, 2nd ed. (posthumous), German transl. by H. Servus. Berlin: Springer 1887.

    Google Scholar 

  16. de Lagrange, J. L. (1870). 1780. Academie Royale des Sciences de Berlin, Reprint by Gauthier-Villars: Théorie de la libration de la lune.

    Google Scholar 

  17. de Lagrange, J. L. (1873). (1764), Récherches sur la libration de la lune. Reprint by Gauthier-Villars: Acad. Royale des Sciences de Paris.

    Google Scholar 

  18. Euler, L. (1736). Mechanica sive motus scientia analytice exposita, German Translation by J. Ph. Wolfers (2 Vols: 1848, 1850), Greifswald: C.A. Koch.

    Google Scholar 

  19. Euler, L. (1744). Methodus inveniendi lineas curvas maximi minimive gaudentes sive solutio problematis isoperimetrici latissimo sensu accepti, 2nd appendix. Lausanne & Genf: Marcus Michaelis Bousquet.

    Google Scholar 

  20. Euler, L. (1750). Découverte d’un nouveau principe de la mécanique, Mém. Acad. Sci. Berlin 6, 185-217, printed 1752.

    Google Scholar 

  21. Euler, L. (1758). Du mouvement de rotations des corps solides autour d’un axe variable, Mém. Acad. Sci. Berlin 14, 154-193, printed 1765.

    Google Scholar 

  22. Euler, L. (1775). Nova methodus motum corporum rigidorum determinandi, Mém. Acad. Sci. Petropol. 20, 208-238, printed 1776.

    Google Scholar 

  23. Föppl, A. (1923). Vorlesungen über Technische Mechanik, Vol. IV, 7th ed., p. 273. Berlin, Leipzig: Teubner. First edition 1899.

    Google Scholar 

  24. Galerkin, B.G. (1915). Series solution of some problems in elastic equilibrium of rods and plates. Vestn. Inzh. Tech., 897–908.

    Google Scholar 

  25. Gattringer, H. (2006). Realisierung, Modellbildung und Regelung einer zweibeinigen Laufmaschine, Johannes Kepler Univ., PhD Thesis.

    Google Scholar 

  26. Gauss, C. F. (1829). Über ein neues allgemeines Grundgesetz der Mechanik. J. f. Reine u. Ang. Mathematik, 4, 232–235.

    Article  MathSciNet  Google Scholar 

  27. Hamel, G. (1904). Die Lagrange-Eulerschen Gleichungen in der Mechanik. Zeitschr. Ang. Math. u. Phys., 50, 1–57.

    MATH  Google Scholar 

  28. Heun, K. (1901). Die Bedeutung des d‘Alembertschen Prinzips für starre Systeme und Gelenkmechanismen. Math: Annalen, III, Nr. II.

    MATH  Google Scholar 

  29. http://www.heise.de/newsticker/meldung/Wissenschafts-KI-zum-Download-877627.html

  30. Hubinger, S. (2012). Ein Beitrag zur semi- analytischen Berechnung von Kontinuumsschwingungen , Johannes Kepler Univ., PhD Thesis.

    Google Scholar 

  31. Jourdain, P. E. B. (1909). Note on an analogue of Gauss’ principle of least constraints. The Quarterly Journal of Pure and Applied Mathematics, XL: 153–157.

    Google Scholar 

  32. Kappus, R. (1939). Zur Elastizität endlicher Verschiebungen, Z. Ang. Math. u. Mech. (ZAMM), 19, Nr.5: 271-285 and Nr.6: 344-361.

    Google Scholar 

  33. Kilian, F. (2013). Schwingungsdämpfungsmethoden elastischer Linearroboter, Johannes Kepler University, PhD Thesis.

    Google Scholar 

  34. Kleemann, U. (1989). Regelung elastischer Roboter, Düsseldorf: Fortschr.-Ber. VDI-Z., 8, Nr. 191.

    Google Scholar 

  35. Klein, F. (1926). Vorlesungen über die Entwicklung der Mathemathik im 19. Jahrhundert, Berlin: Springer (Reprint 1979).

    Google Scholar 

  36. Likins, P. W., & Bouvier, K. H. (1971). Attitude control of nonrigid spacecraft. Astronautics and Aeronautics, 9, 67.

    Google Scholar 

  37. Mach, E. (1883). Die Mechanik in ihrer Entwickelung, Berlin: Springer, [6th edition 1908].

    Google Scholar 

  38. Maggi, G. A. (1903). Principii di Stereodinamica. Milano: Editore Libraio della Real Casa.

    MATH  Google Scholar 

  39. Müller, P. C. (1971). Asymptotische Stabilität von linearen mechanischen Systemen mit positiv semidefiniter Dämpfungsmatrix. Zeitschr. Ang. Math. u. Mech. (ZAMM), 51, T197–T198.

    MATH  Google Scholar 

  40. Müller, P. C. (1995). Non-linear robot control: Method of exact linearization and decoupling by state feedback and alternative control methods. Journal of Applied Mathematics and Computer Science, 5(2), 359–371.

    MathSciNet  MATH  Google Scholar 

  41. Nelson, F. C. (2003). A brief history of early rotor dynamics. Sound and Vibration, 37, 9–11.

    Google Scholar 

  42. Oberhuber, B. (2012). Ein Beitrag zur modularen Modellierung und Regelung redundanter Robotersysteme, Joh. Kepler Univ., PhD Thesis.

    Google Scholar 

  43. Pfeiffer, F. (2007). The TUM walking machines. Philosophical Transactions of the Royal Society A, 1850, 109–131.

    Google Scholar 

  44. Pfeiffer, F. (2005). Mechanical system dynamics. Heidelberg: Springer.

    MATH  Google Scholar 

  45. Poinsot, L. (1837). Elémens de statique (p. 476). Paris: Bachellier.

    Google Scholar 

  46. Prandtl, L. (1899). Kipperscheinungen (PhD thesis), Nürnberg: R. Stich.

    Google Scholar 

  47. Radetsky, P. (1986). The Man who mastered motion. Sience, 52–60.

    Google Scholar 

  48. Rayleigh, Lord J. W., & Strutt,. (1877). The theory of sound. London: McMillan.

    Google Scholar 

  49. Ritz, W. (1909). Theorie der Transversalschwingungen einer quadratischen Platte mit freien Rändern, Ann. d. Phys., IV: 737–786.

    Google Scholar 

  50. Schwertassek, R., & Wallrapp, O. (1999). Dynamik flexibler Mehrkörpersysteme. Braunschweig, Wiesbaden: Vieweg and Sohn.

    Book  Google Scholar 

  51. Sommerfeld, A. (1902). Beiträge über den dynamischen Ausbau der Festigkeitslehre. Physikalische Zeitschrift, 3, 266–271.

    MATH  Google Scholar 

  52. Szabó, I. (1979). Geschichte der mechanischen Prinzipien (2nd ed.). Stuttgart: Birkhäuser.

    Book  MATH  Google Scholar 

  53. Szabó, I. (1979), Bemerkungen zur Literatur über die Geschichte der Mechanik, Humanismus und Technik 22.

    Google Scholar 

  54. Timoshenko, S. P. (1921). On the correction for shear of the differential equation for the transverse vibrations of prismatic bars. Philosophical Magazine, 6(41), 744-746.

    Google Scholar 

  55. Truckenbrodt, A. (1980). Bewegungsverhalten und Regelung hybrider Mehrkörpersysteme mit Anwendung auf Industrieroboter, VDI-Fortschr.-Ber. 8, Nr. 33.

    Google Scholar 

  56. Truesdell, C. (1984). An Idiot’s Fugitive Essays on Sience. Heidelberg: Springer.

    Book  MATH  Google Scholar 

  57. Varignon, P. (1725). Nouvelle Mécanique ou Statique 2, Paris: Claude Jombert.

    Google Scholar 

  58. Vereshchagin, A. F. (1974). Computer simulation of complicated mechanisms of robot manimulators. Engineering and Cybernetics, 6, 65–70.

    Google Scholar 

  59. Weidemann, H.-J. (1993). Dynamik und Regelung von sechsbeinigen Robotern und natürlichen Hexapoden. VDI-Fortschr.-Ber., 8, 362.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Bremer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Bremer, H. (2017). Fascination of Making Models: Truth–Reality–Illusion?. In: Pfeiffer, F., Bremer, H. (eds) The Art of Modeling Mechanical Systems. CISM International Centre for Mechanical Sciences, vol 570. Springer, Cham. https://doi.org/10.1007/978-3-319-40256-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40256-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40255-0

  • Online ISBN: 978-3-319-40256-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics