Modeling Objectives and Realization

  • Friedrich PfeifferEmail author
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 570)


Engineering and Physics cannot be thought of without models; models, which represent the real world to the best of our knowledge. Before starting with any mathematical description, we must establish something like a phenomenological picture, a symbolic map of the real world’s structures with elements like masses, springs, dampers, fluid system, thermodynamic elements, and so forth and, most important, with elements of interconnections. This first step of mechanical modeling is mostly underestimated, but it decides very substantially about the success of all following activities like mathematical modeling, numerical algorithms, and finally computer codes. Therefore, it is worth looking at that more systematically, in spite of the fact that there do not exist systematic approaches to these problems. Establishing models includes very strong phenomenological issues. Models should be as simple as possible and so complex as necessary, not more and not less, and all this is still more an art than a science.


Multibody System Ground Reaction Force Continuous Variable Transmission Unilateral Contact Hydraulic Motor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alart, P., & Curnier, A. A mixed formulation for frictional contact problems prone to Newton-like solution methods. Computer Methods in Applied Mechanics and Engineering, 92.Google Scholar
  2. 2.
    Bazant, Z. P., & Zhou, Y. (2001). Why did World Trade Center collapse? - Simple analysis. Archive of Applied Mechanics, 71, 802–806. Springer.CrossRefzbMATHGoogle Scholar
  3. 3.
    Beitelschmidt, M. (1999). Reibstösse in Mehrkörpersystemen. Fortschritt-Berichte VDI, Reihe (Vol. 11, No. 275). Düsseldorf: VDI.Google Scholar
  4. 4.
    Bork, H., Srnik, J., Pfeiffer, F., Negele, E., & Hedderich, R. (2000). Modellbildung Simulation und Analyse eines leistungsverzweigten Traktorgetriebes. Tagungsband Simulation im Maschinenbau, Institut fr Werkzeugmaschinen, TU-Dresden. (pp. 329–347).Google Scholar
  5. 5.
    Bullinger, M. (2005). Dynamik von Umschlingungsgetrieben mit Schubgliederband. Fortschritt-Berichte VDI, Reihe  (Vol. 12, No. 593). Düsseldorf: VDI.Google Scholar
  6. 6.
    Dresig, H. (2001). Schwingungen mechanischer Antriebssysteme. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  7. 7.
    Duncan, P. E. (1979). Simple models for the dynamics of deepwater gravity platforms. Engineering Structures, 1, 65–72.CrossRefGoogle Scholar
  8. 8.
    Eltze, J. (1994). Biologisch orientierte Entwicklung einer sechsbeinigen Laufmaschine. Fortschritt-Berichte VDI, Reihe (Vol. 17, No. 110). Düsseldorf: VDI.Google Scholar
  9. 9.
    Foerg, M., Neumann, L., Ulbrich, H. (2006). r-factor strategies for the augmented lagrangian approach in multi-body contact mechanics, III European Conference on Computational Mechanics, Lisbon.Google Scholar
  10. 10.
    Foerg, M. (2007). Mehrkörpersysteme mit mengenwertigen Kraftgesetzen - Theorie und Numerik. Dissertation TU-Munich, Lehrstuhl für Angewandte MechanikGoogle Scholar
  11. 11.
    Fujii, T., Kurakawa, T., & Kanehara, S. (1993). A study of metal-pushing V-belt type CVT - Part 1: relation between transmitted torque and pulley thrust. International Congress and Exposition Detroit, SAE Technical Paper Series (Vol. 930666, pp. 1–11).Google Scholar
  12. 12.
    Fujii, T., Takemasa, K., & Kanehara, S. (1993). A study of metal-pushing V-belt type CVT - Part 2: compression force between metal blocks and ring tension. International Congress and Exposition Detroit, SAE Technical Paper Series (Vol. 930667, pp. 13–22).Google Scholar
  13. 13.
    Geier, T. (2007). Dynamics of Push Belt CVTs. Fortschritt-Berichte VDI, Reihe (Vol. 12, No. 654). Düsseldorf: VDI.Google Scholar
  14. 14.
    Geier, Th., Foerg, M., Zander, R., Ulbrich, H., Pfeiffer, F., Brandsma, A., van der Velde, A. (2006). Simulation of a Push Belt CVT considering uni- and bilateral Constraints. Second International Conference on Nonsmooth/Nonconvex Mechanics with Applications in Engineering, Thessaloniki, 2003, ZAMM (Vol. 86, No. 10, pp. 795–806) doi: 10.1002/zamm.200610287.
  15. 15.
    Glocker, Chr. (1995). Dynamik von Starrkörpersystemen mit Reibung und Stössen. Fortschritt-Berichte VDI, Reihe (Vol. 18, No. 182). Düsseldorf: VDI.Google Scholar
  16. 16.
    Glocker, C. (2001). Set-valued force laws - dynamics of non-smooth systems. Berlin, Heidelberg, New York: Springer.CrossRefzbMATHGoogle Scholar
  17. 17.
    Glocker, C. (2013). Energetic consistency conditions for standard impacts Part I: Newton-type inequality impact laws and Kanes example. Multibody System Dynamics, 29, 77117.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Glocker, C. (2014). Energetic consistency conditions for standard impacts Part II: Poisson-type inequality impact laws. Multibody System Dynamics, 32, 445509.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kanehara, S., Fujii, T., & Kitagawa, T. (1994). A study of metal-pushing V-belt type CVT - Part 3: What forces act on metal blocks. International Congress and Exposition Detroit, SAE Technical Paper Series (Vol. 940735, pp. 95–105).Google Scholar
  20. 20.
    Leine, R., & Nijmeijer, H. (2004). Dynamics and bifurcations of non-smooth mechanical systems. Berlin, Heidelberg, New York: Springer.CrossRefzbMATHGoogle Scholar
  21. 21.
    Lutzenberger, c. (2001). Dynamik des menschlichen Ganges. Dissertation TU-München, Lehrstuhl für Angewandte Mechanik.Google Scholar
  22. 22.
    Moreau, J. J. (1988). Unilateral contact and dry friction in finite freedom dynamics. In Volume 302 of International Centre for Mechanical Sciences, Courses and Lectures. J.J. Moreau P.D. Panagiotopoulos Google Scholar
  23. 23.
    Papastavridis, J. G. (2002). Analytical mechanics. Oxford, New York: Oxford University Press.zbMATHGoogle Scholar
  24. 24.
    Pfeiffer, F. (2001). Applications of unilateral multibody dynamics. Philosophical Transactions of the Royal Society, 359(1789), 2609–2628.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Pfeiffer, F. (2009). Mechanical system dynamics. Berlin, Heidelberg: Springer.zbMATHGoogle Scholar
  26. 26.
    Pfeiffer, F., & Glocker, C. (1996). Multibody dynamics with unilateral contacts. New York: Wiley.CrossRefzbMATHGoogle Scholar
  27. 27.
    Pfeiffer, F., & König, E. (2002). Modeling normal and hemiparetic walking. In Human Modeling Conference, Mnchen, 18.-22.6.2002. VDI-Berichte (Vol. 1675, pp. 33–43)Google Scholar
  28. 28.
    Pfeiffer, F., & Schindler, T. (2015). Introduction to dynamics. Berlin Heidelberg: Springer.CrossRefGoogle Scholar
  29. 29.
    Pfeiffer, F., Stiegelmeyr, A. (1997). Damping towerlike structures by dry friction. In Proceedings of DETC ’97, ASME Design Engineering Technical Conference.Google Scholar
  30. 30.
    Pfeiffer, F., Lebrecht, W., Geier, T. (2004). State of the art of CVT-modelling. Paper 04CVT-46, CVT 2004 Congress, San Francisco.Google Scholar
  31. 31.
    Popper, K. (1972). Objective knowledge. Oxford: Clarendon Press.Google Scholar
  32. 32.
    Ropohl, G. (1979). Eine Systemtheorie der Technik. München, Wien: Hanser.Google Scholar
  33. 33.
    Sattler, H. (1999). Stationäres Betriebsverhalten stufenlos verstellbarer Metallumschlingungsgetriebe, Dissertation, Universität Hannover.Google Scholar
  34. 34.
    Sauer, G. (1996). Grundlagen und Betriebsverhalten eines Zugketten-Umschlingungsgetriebes. Fortschritt-Berichte VDI, Reihe (Vol. 12, No. 293). Düsseldorf: VDI.Google Scholar
  35. 35.
    Schindler, Th. (2010). Spatial Dynamics of Pushbelt CVTs. Fortschritt-Berichte VDI, Reihe (Vol. 12, No. 730). Düsseldorf: VDI.Google Scholar
  36. 36.
    Sedlmayr, M. (2003). Räumliche Dynamik von CVT-Keilkettengetrieben. Fortschritt-Berichte VDI, Reihe (Vol. 12, No. 558). Düsseldorf: VDI.Google Scholar
  37. 37.
    Sedlmayr, M., Pfeiffer, F. (2001). Spurversatz bei CVT-Ketten. VDI-Berichte 1630 “Schwingungen in Antrieben 2001” (pp. 117–136).Google Scholar
  38. 38.
    Sedlmayr, M., Pfeiffer, F. (2001). Spatial contact mechanics of CVT chain drives. In 18th ASME Biennial Conference on Mechanical Vibration and Noise DETC01/VIB.Google Scholar
  39. 39.
    Shabana, A. (2005). Dynamics of multibody systems. New York: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  40. 40.
    Srnik, J. (1999). Dynamik von CVT-Keilkettengetrieben. Fortschritt-Berichte VDI, Reihe (Vo. 12, No. 372. Düsseldorf: VDI.Google Scholar
  41. 41.
    von Seherr-Toss, H. C., Schmelz, F., & Aucktor, E. (2006). Universal joints and driveshafts - analysis, design, applications (2nd ed.). Berlin Heidelberg New York: Springer.Google Scholar
  42. 42.
    Wolfsteiner, P. (1999). Dynamik von Vibrationsförderern. Fortschrittberichte VDI, Reihe (Vol. 2. No. 511). Düsseldorf: VDI.Google Scholar
  43. 43.
    Zander, R., & Ulbrich, H. (2006). Reference-free mixed FE-MBS approach for beam structures with constraints. Nonlinear dynamics. Dordrecht Netherlands: Kluwer Academic Publishers.Google Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2017

Authors and Affiliations

  1. 1.Lehrstuhl Fuer Angewandte MechanikTU-MuenchenGarchingGermany

Personalised recommendations