Skip to main content

Batch Verifiable Computation with Public Verifiability for Outsourcing Polynomials and Matrix Computations

  • Conference paper
  • First Online:
Book cover Information Security and Privacy (ACISP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9722))

Included in the following conference series:

Abstract

In a verifiable computation (VC) scheme, a client asks a server to perform some outsourced computations, and the latter returns the results as its response. The results can be verified privately or publicly. Fiore and Gennaro (CCS 2012) constructed publicly verifiable protocols for secure outsourcing polynomials and matrix computations. Batch verifiable computation (BVC) schemes allow a client to outsource multiple functions on a same input, and thus much reduce the storage overhead at the server side without sacrificing the efficiency of verification. However, existing BVC schemes only support private verifiability (which only allows the client who outsources the computations to verify the results). In this paper, we propose BVC schemes with public verifiability, i.e., any third party can efficiently verify the results returned by the server without accessing secret key. To delegate s functions, our BVC schemes require a cloud storage of only \(1+1/s\) times the storage size needed by the s functions themselves. We extend our schemes to meet less cloud storage overhead as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, L.F., Safavi-Naini, R.: Batch verifiable computation of outsourced functions. J. Des. Codes Crypt. 77, 563–585 (2015)

    Article  MathSciNet  Google Scholar 

  2. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and matrix computations, with applications. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, CCS 2012, pp. 501–512. ACM (2012)

    Google Scholar 

  4. Lewko, A.B., Waters, B.: Efficient pseudorandom functions from the decisional linear assumption and weaker variants. In: Proceedings of the 16th ACM Conference on Computer and Communications Security, pp. 112–120. ACM (2009)

    Google Scholar 

  5. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: efficient verification via secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 152–163. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Chung, K.-M., Kalai, Y.T., Liu, F.-H., Raz, R.: Memory delegation. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 151–168. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation using fully homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 483–501. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public: verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Parno, B., Howell, J., Gentry, C., et al.: Pinocchio: nearly practical verifiable computation. In: 2013 IEEE Symposium on Security and Privacy (SP), pp. 238–252. IEEE Press, Berkeley (2013)

    Google Scholar 

  11. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS 2012, pp. 309–325. ACM, New York (2012)

    Google Scholar 

  14. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on outsourced data. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communications Security, pp. 863–874. ACM, New York (2013)

    Google Scholar 

  16. Chen, X., Li, J., Susilo, W.: Efficient fair conditional payments for outsourcing computations. IEEE Trans. Inf. Forensics Secur. 7, 1687–1694 (2014)

    Article  Google Scholar 

  17. Chen, X., Li, J., Ma, J., et al.: New algorithms for secure outsourcing of modular exponentiations. IEEE Trans. Parallel Distrib. Syst. 25, 2386–2396 (2014)

    Article  Google Scholar 

  18. Catalano, D., Fiore, D.: Practical homomorphic MACs for arithmetic circuits. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 336–352. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  19. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, pp. 113–122. ACM, New York (2008)

    Google Scholar 

  20. Atallah, M.J., Frikken, K.B.: Securely outsourcing linear algebra computations. In: Proceedings of the 5th ACM Symposium on Information, Computer and Communications Security, pp. 48–59. ACM, New York (2010)

    Google Scholar 

  21. Atallah, M.J., et al.: Secure outsourcing of scientific computations. Adv. Comput. 54, 215–272 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

Yu Yu (corresponding author) was supported by the National Natural Science Foundation of China (61572192, 61472249, 61572149, 61571191). Xiangxue Li (corresponding author) was supported by Science and Technology Commission of Shanghai Municipality (Grant No. 13JC1403502, 13JC1403500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Yu or Xiangxue Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Sun, Y., Yu, Y., Li, X., Zhang, K., Qian, H., Zhou, Y. (2016). Batch Verifiable Computation with Public Verifiability for Outsourcing Polynomials and Matrix Computations. In: Liu, J., Steinfeld, R. (eds) Information Security and Privacy. ACISP 2016. Lecture Notes in Computer Science(), vol 9722. Springer, Cham. https://doi.org/10.1007/978-3-319-40253-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40253-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40252-9

  • Online ISBN: 978-3-319-40253-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics