Usability Evaluation of a Wheelchair Virtual Simulator Controlled by a Brain-Computer Interface: Lessons Learned to the Design Process

  • Anderson SchuhEmail author
  • Marcia de Borba Campos
  • Marta Bez
  • João Batista Mossmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9738)


This paper presents the design, implementation and evaluation of a wheelchair simulator, which is controlled by a noninvasive Brain-Computer Interface device. We use the eye blink to control the control interface. Two experiments were conducted to evaluate the Simulator’s utilization quality. The results showed that it is important to have a training phase or eye blink calibration, and a module for recognition of voluntary and involuntary blinking. The adopted scanning system for the wheelchair driving and the collision system were well accepted by the participants.


Brain computer interfaces Usability Human computer interaction 


  1. 1.
    Graimann, B., Allison, B., Pfurtscheller, G.: Brain-computer interfaces: a gentle introduction. In: Graimann, B., Pfurtscheller, G., Allison, B. (eds.) Brain-Computer Interfaces. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Levine, S.P., et al.: Identification of electrocorticogram patterns as the basis for a direct brain interface. J. Clin. Neurophysiol. 16, 448–455 (1999)CrossRefGoogle Scholar
  3. 3.
    Leuthardt, E.C., et al.: Evolution of brain-computer interfaces: going beyond classic motor physiology. Neurosurg. Focus 27, 4 (2009)CrossRefGoogle Scholar
  4. 4.
    Nicolas-alonso, L.F., Gomez-gil, J.: Brain computer interfaces, a review. Sensors 12, 1211–1279 (2012)CrossRefGoogle Scholar
  5. 5.
    Wolpaw, J.R.: Brain-computer interfaces as new brain output pathways. J. Physiol. 579, 613–619 (2007)CrossRefGoogle Scholar
  6. 6.
    Lebedev, M.A., Nicolelis, M.A.L.: Brain-machine interfaces: past, present and future. TRENDS in Neurosci. 29(9), 36–546 (2006)CrossRefGoogle Scholar
  7. 7.
    Neurosky. Neurosky Mindwave (2015). Access in: Jun 2015
  8. 8.
    Lafleur, K., et al.: Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface. J. Neural Eng. 10, 046003 (2013)CrossRefGoogle Scholar
  9. 9.
    Filho, P.J. de F. Introdução à Modelagem e Simulação de Sistemas - com Aplicações em Arena, 1st ed. Visual Books, Florianópolis (2001)Google Scholar
  10. 10.
    Akpan, J.P.: Issues associated with inserting computer simulations into biology instruction: a review of the literature. Electronic Journal of Science Education, Southwestern University 5(3) (2001)Google Scholar
  11. 11.
    Diez, P.F., et al.: Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain–computer interface. Med. Eng. Phys. 35, 1155–1164 (2013)CrossRefGoogle Scholar
  12. 12.
    Iturrate, I., Antelis, J., Miguez, J.: Synchronous EEG brain-actuated wheelchair with automated navigation. In: Robotics and Automation, pp. 2318–2325 (2009)Google Scholar
  13. 13.
    Teymourian, A., Lüth, T., Gräser, A., Felzer, T., Nordmann, R.: Brain-controlled finite state machine for wheelchair navigation. Proceedings of 10th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 257–258 (2008)Google Scholar
  14. 14.
    Gentiletti, G.G., et al.: Command of a simulated wheelchair on a virtual environment using a brain-computer interface (2009)Google Scholar
  15. 15.
    Grychtol, B. Lakany, H. Bernard, A. A virtual reality wheelchair driving simulator for use with a brain-computer interface. Proceedings of the 5th UKRI PG Conference in Biomedical Engineering and Medical Physics. (2009)Google Scholar
  16. 16.
    Rani, J.A.B., Umamakeswari, A.: Eletroencephalogram-based Brain Controlled Robotic Whellchair. Indian J. Sci. Technol. 8, 188–197 (2015)CrossRefGoogle Scholar
  17. 17.
    del R. Millán, J. et al.: Asynchronous Non-Invasive Brain-Actuated Control of an Intelligent Wheelchair (2009)Google Scholar
  18. 18.
    Ahn, S., et al.: Achieving a hybrid brain-computer interface with tactile selective attention and motor imagery. J. Neural Eng. 11, 066004 (2014)CrossRefGoogle Scholar
  19. 19.
    Millán, J.D., et al.: Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges. Front. Neurosci. 4, 161 (2010)Google Scholar
  20. 20.
    Galán, F., et al.: A brain-actuated wheelchair: Asynchronous and non-invasive Brain-computer interfaces for continuous control of robots. Clin. Neurophysiol. 119, 2159–2169 (2008)CrossRefGoogle Scholar
  21. 21.
    Alisson, B.Z., et al.: Toward a hybrid brain-computer interface based on imagined movement and visual attention. J. Neural Eng. 7, 026007 (2010)CrossRefGoogle Scholar
  22. 22.
    Diez, P.F., et al.: Attention-level transitory response: a novel hybrid BCI approach. J. Neural Eng. 12, 056007 (2015)CrossRefGoogle Scholar
  23. 23.
    Jazzy. Product Specifications Sheet (2011). Access in out/2013
  24. 24.
    IBGE. Dados amostrais e estimativas populacionais das medianas de altura e peso, por situação do domicílio e sexo, segundo a idade e os grupos de idade Brasil – período 2008–2009. 2009. Access in: out/2013
  25. 25.
    Browning, N.: Recursos de acessibilidade ao computador. In: Schirmer, C. et al. (eds.) Atendimento Educacional especializado: deficiência física. Brasília: SEESP-SEED-MEC. (2007)

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Anderson Schuh
    • 1
    Email author
  • Marcia de Borba Campos
    • 1
  • Marta Bez
    • 2
  • João Batista Mossmann
    • 2
  1. 1.Faculty of Informatics (FACIN)Pontifical Catholic University of Rio Grande do Sul (PUCRS)Porto AlegreBrazil
  2. 2.Faculty of Informatics (FACIN)Feevale UniversityNovo HamburgoBrazil

Personalised recommendations