The Pharmacologist’s Point of View: Mechanisms of Cardiotoxicity

  • Barbara Bassani
  • Antonino Bruno
  • Nicoletta Macrì
  • Paola Corradino
  • Douglas M. Noonan
  • Adriana Albini


Cancer chemotherapy has made remarkable advances in the treatment of both solid and hematologic malignancies, and significant progress has been achieved in the reduction of recurrences. However, many anticancer agents, while successuful in their anti-tumor activities, are often associated with side effects affecting the cardiovascular compartment, leading to an increase in morbidity and mortality. Here we will discuss the cellular and molecular alterations occurring in the chemotherapy-induced cardiotoxicity, focusing on the main anti-cancer agent categories employed in cancer treatment and we report suggestions on screening approaches. We revise concept of cardio-oncology and cardio-oncological prevention, an interdisciplinary field that joins oncologists and cardiologists, with the necessary aim to limit or prevent chemotherapyinduced cardiotoxicity.



Antonino Bruno is currently supported by a fellowship from the Fondazione Umberto Veronesi. Barbara Bassani is a participant of the PhD program in Biotechnology, Biosciences and Surgical Technologies, School in Biological and Medical Sciences, University of Insubria. We thank Alessandra Panvini Rosati for the secretariat assistance.


  1. 1.
    Brown SA, Sandhu N, Herrmann J. Systems biology approaches to adverse drug effects: the example of cardio-oncology. Nat Rev Clin Oncol. 2015;12:718–31.CrossRefPubMedGoogle Scholar
  2. 2.
    Bordoni B, et al. Cardiologic evaluation of patients undergoing chemotherapy. Monaldi Arch Chest Dis. 2014;82(2):68–74.PubMedGoogle Scholar
  3. 3.
    Albini A, et al. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst. 2010;102(1):14–25.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ewer MS, Lippman SM. Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity. J Clin Oncol. 2005;23(13):2900–2.CrossRefPubMedGoogle Scholar
  5. 5.
    Conway A, et al. The prevention, detection and management of cancer treatment-induced cardiotoxicity: a meta-review. BMC Cancer. 2015;15:366.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wells QS, Lenihan DJ. Reversibility of left ventricular dysfunction resulting from chemotherapy: can this be expected? Prog Cardiovasc Dis. 2010;53(2):140–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Focaccetti C, et al. Effects of 5-fluorouracil on morphology, cell cycle, proliferation, apoptosis, autophagy and ROS production in endothelial cells and cardiomyocytes. PLoS One. 2015;10(2):e0115686.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Albini A, et al. Bringing new players into the field: onco-pharmacovigilance in the era of cardio-oncology. Intern Emerg Med. 2012;7(2):99–101.CrossRefPubMedGoogle Scholar
  9. 9.
    Lyu YL, et al. Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 2007;67(18):8839–46.CrossRefPubMedGoogle Scholar
  10. 10.
    Curigliano G, et al. Cardiac toxicity from systemic cancer therapy: a comprehensive review. Prog Cardiovasc Dis. 2010;53(2):94–104.CrossRefPubMedGoogle Scholar
  11. 11.
    Monsuez JJ, et al. Cardiac side-effects of cancer chemotherapy. Int J Cardiol. 2010;144(1):3–15.CrossRefPubMedGoogle Scholar
  12. 12.
    Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97(11):2869–79.CrossRefPubMedGoogle Scholar
  13. 13.
    Chen B, et al. Molecular and cellular mechanisms of anthracycline cardiotoxicity. Cardiovasc Toxicol. 2007;7(2):114–21.CrossRefPubMedGoogle Scholar
  14. 14.
    Rochette L, et al. Anthracyclines/trastuzumab: new aspects of cardiotoxicity and molecular mechanisms. Trends Pharmacol Sci. 2015;36(6):326–48.CrossRefPubMedGoogle Scholar
  15. 15.
    van Norren K, et al. Direct effects of doxorubicin on skeletal muscle contribute to fatigue. Br J Cancer. 2009;100(2):311–4.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Richard C, et al. Oxidative stress and myocardial gene alterations associated with Doxorubicin-induced cardiotoxicity in rats persist for 2 months after treatment cessation. J Pharmacol Exp Ther. 2011;339(3):807–14.CrossRefPubMedGoogle Scholar
  17. 17.
    Tony H, Yu K, Qiutang Z. MicroRNA-208a silencing attenuates doxorubicin induced myocyte apoptosis and cardiac dysfunction. Oxid Med Cell Longev. 2015;2015:597032.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tong Z, et al. MiR-21 protected cardiomyocytes against doxorubicin-induced apoptosis by targeting BTG2. Int J Mol Sci. 2015;16(7):14511–25.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Roca-Alonso L, et al. Myocardial MiR-30 downregulation triggered by doxorubicin drives alterations in beta-adrenergic signaling and enhances apoptosis. Cell Death Dis. 2015;6:e1754.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Deng S, et al. Dexrazoxane may prevent doxorubicin-induced DNA damage via depleting both topoisomerase II isoforms. BMC Cancer. 2014;14:842.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Elitok A, et al. Effect of carvedilol on silent anthracycline-induced cardiotoxicity assessed by strain imaging: a prospective randomized controlled study with six-month follow-up. Cardiol J. 2014;21(5):509–15.CrossRefPubMedGoogle Scholar
  22. 22.
    Cernecka H, et al. Enalaprilat increases PPARbeta/delta expression, without influence on PPARalpha and PPARgamma, and modulate cardiac function in sub-acute model of daunorubicin-induced cardiomyopathy. Eur J Pharmacol. 2013;714(1–3):472–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Colombo A, et al. Cardiac complications of chemotherapy: role of biomarkers. Curr Treat Options Cardiovasc Med. 2014;16(6):313.CrossRefPubMedGoogle Scholar
  24. 24.
    Grem JL. Mechanisms of action and modulation of fluorouracil. Semin Radiat Oncol. 1997;7(4):249–59.CrossRefPubMedGoogle Scholar
  25. 25.
    Sorrentino MF, et al. 5-fluorouracil induced cardiotoxicity: review of the literature. Cardiol J. 2012;19(5):453–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Polk A, et al. Cardiotoxicity in cancer patients treated with 5-fluorouracil or capecitabine: a systematic review of incidence, manifestations and predisposing factors. Cancer Treat Rev. 2013;39(8):974–84.CrossRefPubMedGoogle Scholar
  27. 27.
    Amstutz U, et al. Hypermethylation of the DPYD promoter region is not a major predictor of severe toxicity in 5-fluorouracil based chemotherapy. J Exp Clin Cancer Res. 2008;27:54.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Durak I, et al. Reduced antioxidant defense capacity in myocardial tissue from guinea pigs treated with 5-fluorouracil. J Toxicol Environ Health A. 2000;59(7):585–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Molteni LP, et al. Capecitabine in breast cancer: the issue of cardiotoxicity during fluoropyrimidine treatment. Breast J. 2010;16 Suppl 1:S45–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Polk A, et al. A systematic review of the pathophysiology of 5-fluorouracil-induced cardiotoxicity. BMC Pharmacol Toxicol. 2014;15:47.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tsibiribi P, et al. Cardiac lesions induced by 5-fluorouracil in the rabbit. Hum Exp Toxicol. 2006;25(6):305–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53(24):2231–47.CrossRefPubMedGoogle Scholar
  33. 33.
    Calik AN, et al. Initial dose effect of 5-fluorouracil: rapidly improving severe, acute toxic myopericarditis. Am J Emerg Med. 2012;30(1):257 e1–3.CrossRefGoogle Scholar
  34. 34.
    Dechant C, et al. Acute reversible heart failure caused by coronary vasoconstriction due to continuous 5-fluorouracil combination chemotherapy. Case Rep Oncol. 2012;5(2):296–301.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Eskandari MR, et al. A comparison of cardiomyocyte cytotoxic mechanisms for 5-fluorouracil and its pro-drug capecitabine. Xenobiotica. 2015;45(1):79–87.CrossRefPubMedGoogle Scholar
  36. 36.
    Filgueiras Mde C, et al. Effects of 5-fluorouracil in nuclear and cellular morphology, proliferation, cell cycle, apoptosis, cytoskeletal and caveolar distribution in primary cultures of smooth muscle cells. PLoS One. 2013;8(4):e63177.CrossRefPubMedGoogle Scholar
  37. 37.
    Magnani E, et al. Fluoropyrimidine toxicity in patients with dihydropyrimidine dehydrogenase splice site variant: the need for further revision of dose and schedule. Intern Emerg Med. 2013;8(5):417–23.CrossRefPubMedGoogle Scholar
  38. 38.
    Wei X, et al. Molecular basis of the human dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil toxicity. J Clin Invest. 1996;98(3):610–5.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Bonita R, Pradhan R. Cardiovascular toxicities of cancer chemotherapy. Semin Oncol. 2013;40(2):156–67.CrossRefPubMedGoogle Scholar
  40. 40.
    Schimmel KJ, et al. Cardiotoxicity of cytotoxic drugs. Cancer Treat Rev. 2004;30(2):181–91.CrossRefPubMedGoogle Scholar
  41. 41.
    Herrmann J, et al. Evaluation and management of patients with heart disease and cancer: cardio-oncology. Mayo Clin Proc. 2014;89(9):1287–306.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Braverman AC, et al. Cyclophosphamide cardiotoxicity in bone marrow transplantation: a prospective evaluation of new dosing regimens. J Clin Oncol. 1991;9(7):1215–23.CrossRefPubMedGoogle Scholar
  43. 43.
    Dhesi S, et al. Cyclophosphamide-induced cardiomyopathy: a case report, review, and recommendations for management. J Investig Med High Impact Case Rep. 2013;1(1):2324709613480346.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Asiri YA. Probucol attenuates cyclophosphamide-induced oxidative apoptosis, p53 and Bax signal expression in rat cardiac tissues. Oxid Med Cell Longev. 2010;3(5):308–16.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Mythili Y, et al. Protective effect of DL-alpha-lipoic acid on cyclophosphamide induced hyperlipidemic cardiomyopathy. Eur J Pharmacol. 2006;543(1–3):92–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Sudharsan PT, et al. Lupeol and its ester exhibit protective role against cyclophosphamide-induced cardiac mitochondrial toxicity. J Cardiovasc Pharmacol. 2006;47(2):205–10.CrossRefPubMedGoogle Scholar
  47. 47.
    Bockorny M, et al. Severe heart failure after bortezomib treatment in a patient with multiple myeloma: a case report and review of the literature. Acta Haematol. 2012;128(4):244–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Grandin EW, et al. Patterns of cardiac toxicity associated with irreversible proteasome inhibition in the treatment of multiple myeloma. J Card Fail. 2015;21(2):138–44.CrossRefPubMedGoogle Scholar
  49. 49.
    Nowis D, et al. Cardiotoxicity of the anticancer therapeutic agent bortezomib. Am J Pathol. 2010;176(6):2658–68.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Criscitiello C, Curigliano G. HER2 signaling pathway and trastuzumab cardiotoxicity. Future Oncol. 2013;9(2):179–81.CrossRefPubMedGoogle Scholar
  51. 51.
    Odiete O, Hill MF, Sawyer DB. Neuregulin in cardiovascular development and disease. Circ Res. 2012;111(10):1376–85.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    ElZarrad MK, et al. Trastuzumab alters the expression of genes essential for cardiac function and induces ultrastructural changes of cardiomyocytes in mice. PLoS One. 2013;8(11):e79543.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    van Boxtel W, et al. New biomarkers for early detection of cardiotoxicity after treatment with docetaxel, doxorubicin and cyclophosphamide. Biomarkers. 2015;20(2):143–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Richard C, et al. Effects of angiotensin-1 converting enzyme inhibition on oxidative stress and bradykinin receptor expression during doxorubicin-induced cardiomyopathy in rats. J Cardiovasc Pharmacol. 2008;52(3):278–85.CrossRefPubMedGoogle Scholar
  55. 55.
    Pandya K, et al. Targeting both Notch and ErbB-2 signalling pathways is required for prevention of ErbB-2-positive breast tumour recurrence. Br J Cancer. 2011;105(6):796–806.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Aarons RD, et al. Increased human lymphocyte beta-adrenergic receptor density following chronic propranolol treatment. Proc West Pharmacol Soc. 1979;22:175–6.PubMedGoogle Scholar
  57. 57.
    Seemann I, et al. Radiation- and anthracycline-induced cardiac toxicity and the influence of ErbB2 blocking agents. Breast Cancer Res Treat. 2013;141(3):385–95.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kerkela R, et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med. 2006;12(8):908–16.CrossRefPubMedGoogle Scholar
  59. 59.
    Force T, Krause DS, Van Etten RA. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer. 2007;7(5):332–44.CrossRefPubMedGoogle Scholar
  60. 60.
    Marchan R, Bolt HM. Imatinib: the controversial discussion on cardiotoxicity induced by endoplasmic reticulum (ER) stress. Arch Toxicol. 2012;86(3):339–40.CrossRefPubMedGoogle Scholar
  61. 61.
    Lai E, Teodoro T, Volchuk A. Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology (Bethesda). 2007;22:193–201.CrossRefGoogle Scholar
  62. 62.
    Ahmadizar F, et al. Efficacy and safety assessment of the addition of bevacizumab to adjuvant therapy agents in cancer patients: a systematic review and meta-analysis of randomized controlled trials. PLoS One. 2015;10(9):e0136324.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Lee CS, et al. Routine proteinuria monitoring for bevacizumab in patients with gynecologic malignancies. J Oncol Pharm Pract. 2015. doi: 10.1177/1078155215609987Google Scholar
  64. 64.
    Zhao Z, et al. Dysregulated miR1254 and miR579 for cardiotoxicity in patients treated with bevacizumab in colorectal cancer. Tumour Biol. 2014;35(6):5227–35.CrossRefPubMedGoogle Scholar
  65. 65.
    Bronte G, et al. Conquests and perspectives of cardio-oncology in the field of tumor angiogenesis-targeting tyrosine kinase inhibitor-based therapy. Expert Opin Drug Saf. 2015;14(2):253–67.CrossRefPubMedGoogle Scholar
  66. 66.
    Mellor HR, et al. Cardiotoxicity associated with targeting kinase pathways in cancer. Toxicol Sci. 2011;120(1):14–32.CrossRefPubMedGoogle Scholar
  67. 67.
    Hoy SM. Cabozantinib: a review of its use in patients with medullary thyroid cancer. Drugs. 2014;74(12):1435–44.CrossRefPubMedGoogle Scholar
  68. 68.
    Orphanos GS, Ioannidis GN, Ardavanis AG. Cardiotoxicity induced by tyrosine kinase inhibitors. Acta Oncol. 2009;48(7):964–70.CrossRefPubMedGoogle Scholar
  69. 69.
    Dyck JR, Lopaschuk GD. AMPK alterations in cardiac physiology and pathology: enemy or ally? J Physiol. 2006;574(Pt 1):95–112.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Terai K, et al. AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Mol Cell Biol. 2005;25(21):9554–75.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Chintalgattu V, et al. Coronary microvascular pericytes are the cellular target of sunitinib malate-induced cardiotoxicity. Sci Transl Med. 2013;5(187):187ra69.CrossRefPubMedGoogle Scholar
  72. 72.
    Kyriakis JM, et al. Mitogen regulation of c-Raf-1 protein kinase activity toward mitogen-activated protein kinase-kinase. J Biol Chem. 1993;268(21):16009–19.PubMedGoogle Scholar
  73. 73.
    Chen J, et al. Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc Natl Acad Sci USA. 2001;98(14):7783–8.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    O’Neill E, Kolch W. Taming the Hippo: Raf-1 controls apoptosis by suppressing MST2/Hippo. Cell Cycle. 2005;4(3):365–7.CrossRefPubMedGoogle Scholar
  75. 75.
    Heath EI, et al. A randomized, double-blind, placebo-controlled study to evaluate the effect of repeated oral doses of pazopanib on cardiac conduction in patients with solid tumors. Cancer Chemother Pharmacol. 2013;71(3):565–73.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Bronte E, et al. What links BRAF to the heart function? new insights from the cardiotoxicity of BRAF inhibitors in cancer treatment. Oncotarget. 2015;6:35589–601.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Scheffel RS, et al. Toxic cardiomyopathy leading to fatal acute cardiac failure related to vandetanib: a case report with histopathological analysis. Eur J Endocrinol. 2013;168(6):K51–4.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Barbara Bassani
    • 1
  • Antonino Bruno
    • 1
  • Nicoletta Macrì
    • 1
  • Paola Corradino
    • 1
  • Douglas M. Noonan
    • 1
    • 2
  • Adriana Albini
    • 1
  1. 1.Laboratory of Vascular Biology and AngiogenesisScientific and Tecnology Park, IRCCS MultiMedicaMilanItaly
  2. 2.Department of Biotechnologies and Life SciencesUniversity of InsubriaVareseItaly

Personalised recommendations