Skip to main content

The Pharmacologist’s Point of View: Mechanisms of Cardiotoxicity

  • Chapter
  • First Online:
  • 705 Accesses

Abstract

Cancer chemotherapy has made remarkable advances in the treatment of both solid and hematologic malignancies, and significant progress has been achieved in the reduction of recurrences. However, many anticancer agents, while successuful in their anti-tumor activities, are often associated with side effects affecting the cardiovascular compartment, leading to an increase in morbidity and mortality. Here we will discuss the cellular and molecular alterations occurring in the chemotherapy-induced cardiotoxicity, focusing on the main anti-cancer agent categories employed in cancer treatment and we report suggestions on screening approaches. We revise concept of cardio-oncology and cardio-oncological prevention, an interdisciplinary field that joins oncologists and cardiologists, with the necessary aim to limit or prevent chemotherapyinduced cardiotoxicity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brown SA, Sandhu N, Herrmann J. Systems biology approaches to adverse drug effects: the example of cardio-oncology. Nat Rev Clin Oncol. 2015;12:718–31.

    Article  CAS  PubMed  Google Scholar 

  2. Bordoni B, et al. Cardiologic evaluation of patients undergoing chemotherapy. Monaldi Arch Chest Dis. 2014;82(2):68–74.

    PubMed  Google Scholar 

  3. Albini A, et al. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst. 2010;102(1):14–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ewer MS, Lippman SM. Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity. J Clin Oncol. 2005;23(13):2900–2.

    Article  CAS  PubMed  Google Scholar 

  5. Conway A, et al. The prevention, detection and management of cancer treatment-induced cardiotoxicity: a meta-review. BMC Cancer. 2015;15:366.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wells QS, Lenihan DJ. Reversibility of left ventricular dysfunction resulting from chemotherapy: can this be expected? Prog Cardiovasc Dis. 2010;53(2):140–8.

    Article  PubMed  Google Scholar 

  7. Focaccetti C, et al. Effects of 5-fluorouracil on morphology, cell cycle, proliferation, apoptosis, autophagy and ROS production in endothelial cells and cardiomyocytes. PLoS One. 2015;10(2):e0115686.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Albini A, et al. Bringing new players into the field: onco-pharmacovigilance in the era of cardio-oncology. Intern Emerg Med. 2012;7(2):99–101.

    Article  PubMed  Google Scholar 

  9. Lyu YL, et al. Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 2007;67(18):8839–46.

    Article  CAS  PubMed  Google Scholar 

  10. Curigliano G, et al. Cardiac toxicity from systemic cancer therapy: a comprehensive review. Prog Cardiovasc Dis. 2010;53(2):94–104.

    Article  CAS  PubMed  Google Scholar 

  11. Monsuez JJ, et al. Cardiac side-effects of cancer chemotherapy. Int J Cardiol. 2010;144(1):3–15.

    Article  PubMed  Google Scholar 

  12. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97(11):2869–79.

    Article  CAS  PubMed  Google Scholar 

  13. Chen B, et al. Molecular and cellular mechanisms of anthracycline cardiotoxicity. Cardiovasc Toxicol. 2007;7(2):114–21.

    Article  CAS  PubMed  Google Scholar 

  14. Rochette L, et al. Anthracyclines/trastuzumab: new aspects of cardiotoxicity and molecular mechanisms. Trends Pharmacol Sci. 2015;36(6):326–48.

    Article  CAS  PubMed  Google Scholar 

  15. van Norren K, et al. Direct effects of doxorubicin on skeletal muscle contribute to fatigue. Br J Cancer. 2009;100(2):311–4.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Richard C, et al. Oxidative stress and myocardial gene alterations associated with Doxorubicin-induced cardiotoxicity in rats persist for 2 months after treatment cessation. J Pharmacol Exp Ther. 2011;339(3):807–14.

    Article  CAS  PubMed  Google Scholar 

  17. Tony H, Yu K, Qiutang Z. MicroRNA-208a silencing attenuates doxorubicin induced myocyte apoptosis and cardiac dysfunction. Oxid Med Cell Longev. 2015;2015:597032.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tong Z, et al. MiR-21 protected cardiomyocytes against doxorubicin-induced apoptosis by targeting BTG2. Int J Mol Sci. 2015;16(7):14511–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roca-Alonso L, et al. Myocardial MiR-30 downregulation triggered by doxorubicin drives alterations in beta-adrenergic signaling and enhances apoptosis. Cell Death Dis. 2015;6:e1754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Deng S, et al. Dexrazoxane may prevent doxorubicin-induced DNA damage via depleting both topoisomerase II isoforms. BMC Cancer. 2014;14:842.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Elitok A, et al. Effect of carvedilol on silent anthracycline-induced cardiotoxicity assessed by strain imaging: a prospective randomized controlled study with six-month follow-up. Cardiol J. 2014;21(5):509–15.

    Article  PubMed  Google Scholar 

  22. Cernecka H, et al. Enalaprilat increases PPARbeta/delta expression, without influence on PPARalpha and PPARgamma, and modulate cardiac function in sub-acute model of daunorubicin-induced cardiomyopathy. Eur J Pharmacol. 2013;714(1–3):472–7.

    Article  CAS  PubMed  Google Scholar 

  23. Colombo A, et al. Cardiac complications of chemotherapy: role of biomarkers. Curr Treat Options Cardiovasc Med. 2014;16(6):313.

    Article  PubMed  Google Scholar 

  24. Grem JL. Mechanisms of action and modulation of fluorouracil. Semin Radiat Oncol. 1997;7(4):249–59.

    Article  CAS  PubMed  Google Scholar 

  25. Sorrentino MF, et al. 5-fluorouracil induced cardiotoxicity: review of the literature. Cardiol J. 2012;19(5):453–8.

    Article  PubMed  Google Scholar 

  26. Polk A, et al. Cardiotoxicity in cancer patients treated with 5-fluorouracil or capecitabine: a systematic review of incidence, manifestations and predisposing factors. Cancer Treat Rev. 2013;39(8):974–84.

    Article  CAS  PubMed  Google Scholar 

  27. Amstutz U, et al. Hypermethylation of the DPYD promoter region is not a major predictor of severe toxicity in 5-fluorouracil based chemotherapy. J Exp Clin Cancer Res. 2008;27:54.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Durak I, et al. Reduced antioxidant defense capacity in myocardial tissue from guinea pigs treated with 5-fluorouracil. J Toxicol Environ Health A. 2000;59(7):585–9.

    Article  CAS  PubMed  Google Scholar 

  29. Molteni LP, et al. Capecitabine in breast cancer: the issue of cardiotoxicity during fluoropyrimidine treatment. Breast J. 2010;16 Suppl 1:S45–8.

    Article  CAS  PubMed  Google Scholar 

  30. Polk A, et al. A systematic review of the pathophysiology of 5-fluorouracil-induced cardiotoxicity. BMC Pharmacol Toxicol. 2014;15:47.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tsibiribi P, et al. Cardiac lesions induced by 5-fluorouracil in the rabbit. Hum Exp Toxicol. 2006;25(6):305–9.

    Article  CAS  PubMed  Google Scholar 

  32. Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53(24):2231–47.

    Article  CAS  PubMed  Google Scholar 

  33. Calik AN, et al. Initial dose effect of 5-fluorouracil: rapidly improving severe, acute toxic myopericarditis. Am J Emerg Med. 2012;30(1):257 e1–3.

    Article  Google Scholar 

  34. Dechant C, et al. Acute reversible heart failure caused by coronary vasoconstriction due to continuous 5-fluorouracil combination chemotherapy. Case Rep Oncol. 2012;5(2):296–301.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Eskandari MR, et al. A comparison of cardiomyocyte cytotoxic mechanisms for 5-fluorouracil and its pro-drug capecitabine. Xenobiotica. 2015;45(1):79–87.

    Article  CAS  PubMed  Google Scholar 

  36. Filgueiras Mde C, et al. Effects of 5-fluorouracil in nuclear and cellular morphology, proliferation, cell cycle, apoptosis, cytoskeletal and caveolar distribution in primary cultures of smooth muscle cells. PLoS One. 2013;8(4):e63177.

    Article  PubMed  Google Scholar 

  37. Magnani E, et al. Fluoropyrimidine toxicity in patients with dihydropyrimidine dehydrogenase splice site variant: the need for further revision of dose and schedule. Intern Emerg Med. 2013;8(5):417–23.

    Article  PubMed  Google Scholar 

  38. Wei X, et al. Molecular basis of the human dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil toxicity. J Clin Invest. 1996;98(3):610–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bonita R, Pradhan R. Cardiovascular toxicities of cancer chemotherapy. Semin Oncol. 2013;40(2):156–67.

    Article  CAS  PubMed  Google Scholar 

  40. Schimmel KJ, et al. Cardiotoxicity of cytotoxic drugs. Cancer Treat Rev. 2004;30(2):181–91.

    Article  CAS  PubMed  Google Scholar 

  41. Herrmann J, et al. Evaluation and management of patients with heart disease and cancer: cardio-oncology. Mayo Clin Proc. 2014;89(9):1287–306.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Braverman AC, et al. Cyclophosphamide cardiotoxicity in bone marrow transplantation: a prospective evaluation of new dosing regimens. J Clin Oncol. 1991;9(7):1215–23.

    Article  CAS  PubMed  Google Scholar 

  43. Dhesi S, et al. Cyclophosphamide-induced cardiomyopathy: a case report, review, and recommendations for management. J Investig Med High Impact Case Rep. 2013;1(1):2324709613480346.

    PubMed  PubMed Central  Google Scholar 

  44. Asiri YA. Probucol attenuates cyclophosphamide-induced oxidative apoptosis, p53 and Bax signal expression in rat cardiac tissues. Oxid Med Cell Longev. 2010;3(5):308–16.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mythili Y, et al. Protective effect of DL-alpha-lipoic acid on cyclophosphamide induced hyperlipidemic cardiomyopathy. Eur J Pharmacol. 2006;543(1–3):92–6.

    Article  CAS  PubMed  Google Scholar 

  46. Sudharsan PT, et al. Lupeol and its ester exhibit protective role against cyclophosphamide-induced cardiac mitochondrial toxicity. J Cardiovasc Pharmacol. 2006;47(2):205–10.

    Article  CAS  PubMed  Google Scholar 

  47. Bockorny M, et al. Severe heart failure after bortezomib treatment in a patient with multiple myeloma: a case report and review of the literature. Acta Haematol. 2012;128(4):244–7.

    Article  PubMed  Google Scholar 

  48. Grandin EW, et al. Patterns of cardiac toxicity associated with irreversible proteasome inhibition in the treatment of multiple myeloma. J Card Fail. 2015;21(2):138–44.

    Article  CAS  PubMed  Google Scholar 

  49. Nowis D, et al. Cardiotoxicity of the anticancer therapeutic agent bortezomib. Am J Pathol. 2010;176(6):2658–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Criscitiello C, Curigliano G. HER2 signaling pathway and trastuzumab cardiotoxicity. Future Oncol. 2013;9(2):179–81.

    Article  CAS  PubMed  Google Scholar 

  51. Odiete O, Hill MF, Sawyer DB. Neuregulin in cardiovascular development and disease. Circ Res. 2012;111(10):1376–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. ElZarrad MK, et al. Trastuzumab alters the expression of genes essential for cardiac function and induces ultrastructural changes of cardiomyocytes in mice. PLoS One. 2013;8(11):e79543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. van Boxtel W, et al. New biomarkers for early detection of cardiotoxicity after treatment with docetaxel, doxorubicin and cyclophosphamide. Biomarkers. 2015;20(2):143–8.

    Article  PubMed  Google Scholar 

  54. Richard C, et al. Effects of angiotensin-1 converting enzyme inhibition on oxidative stress and bradykinin receptor expression during doxorubicin-induced cardiomyopathy in rats. J Cardiovasc Pharmacol. 2008;52(3):278–85.

    Article  CAS  PubMed  Google Scholar 

  55. Pandya K, et al. Targeting both Notch and ErbB-2 signalling pathways is required for prevention of ErbB-2-positive breast tumour recurrence. Br J Cancer. 2011;105(6):796–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Aarons RD, et al. Increased human lymphocyte beta-adrenergic receptor density following chronic propranolol treatment. Proc West Pharmacol Soc. 1979;22:175–6.

    CAS  PubMed  Google Scholar 

  57. Seemann I, et al. Radiation- and anthracycline-induced cardiac toxicity and the influence of ErbB2 blocking agents. Breast Cancer Res Treat. 2013;141(3):385–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kerkela R, et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med. 2006;12(8):908–16.

    Article  PubMed  Google Scholar 

  59. Force T, Krause DS, Van Etten RA. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer. 2007;7(5):332–44.

    Article  CAS  PubMed  Google Scholar 

  60. Marchan R, Bolt HM. Imatinib: the controversial discussion on cardiotoxicity induced by endoplasmic reticulum (ER) stress. Arch Toxicol. 2012;86(3):339–40.

    Article  CAS  PubMed  Google Scholar 

  61. Lai E, Teodoro T, Volchuk A. Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology (Bethesda). 2007;22:193–201.

    Article  CAS  Google Scholar 

  62. Ahmadizar F, et al. Efficacy and safety assessment of the addition of bevacizumab to adjuvant therapy agents in cancer patients: a systematic review and meta-analysis of randomized controlled trials. PLoS One. 2015;10(9):e0136324.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lee CS, et al. Routine proteinuria monitoring for bevacizumab in patients with gynecologic malignancies. J Oncol Pharm Pract. 2015. doi: 10.1177/1078155215609987

    Google Scholar 

  64. Zhao Z, et al. Dysregulated miR1254 and miR579 for cardiotoxicity in patients treated with bevacizumab in colorectal cancer. Tumour Biol. 2014;35(6):5227–35.

    Article  CAS  PubMed  Google Scholar 

  65. Bronte G, et al. Conquests and perspectives of cardio-oncology in the field of tumor angiogenesis-targeting tyrosine kinase inhibitor-based therapy. Expert Opin Drug Saf. 2015;14(2):253–67.

    Article  CAS  PubMed  Google Scholar 

  66. Mellor HR, et al. Cardiotoxicity associated with targeting kinase pathways in cancer. Toxicol Sci. 2011;120(1):14–32.

    Article  CAS  PubMed  Google Scholar 

  67. Hoy SM. Cabozantinib: a review of its use in patients with medullary thyroid cancer. Drugs. 2014;74(12):1435–44.

    Article  CAS  PubMed  Google Scholar 

  68. Orphanos GS, Ioannidis GN, Ardavanis AG. Cardiotoxicity induced by tyrosine kinase inhibitors. Acta Oncol. 2009;48(7):964–70.

    Article  CAS  PubMed  Google Scholar 

  69. Dyck JR, Lopaschuk GD. AMPK alterations in cardiac physiology and pathology: enemy or ally? J Physiol. 2006;574(Pt 1):95–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Terai K, et al. AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Mol Cell Biol. 2005;25(21):9554–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chintalgattu V, et al. Coronary microvascular pericytes are the cellular target of sunitinib malate-induced cardiotoxicity. Sci Transl Med. 2013;5(187):187ra69.

    Article  PubMed  Google Scholar 

  72. Kyriakis JM, et al. Mitogen regulation of c-Raf-1 protein kinase activity toward mitogen-activated protein kinase-kinase. J Biol Chem. 1993;268(21):16009–19.

    CAS  PubMed  Google Scholar 

  73. Chen J, et al. Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc Natl Acad Sci USA. 2001;98(14):7783–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. O’Neill E, Kolch W. Taming the Hippo: Raf-1 controls apoptosis by suppressing MST2/Hippo. Cell Cycle. 2005;4(3):365–7.

    Article  PubMed  Google Scholar 

  75. Heath EI, et al. A randomized, double-blind, placebo-controlled study to evaluate the effect of repeated oral doses of pazopanib on cardiac conduction in patients with solid tumors. Cancer Chemother Pharmacol. 2013;71(3):565–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bronte E, et al. What links BRAF to the heart function? new insights from the cardiotoxicity of BRAF inhibitors in cancer treatment. Oncotarget. 2015;6:35589–601.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Scheffel RS, et al. Toxic cardiomyopathy leading to fatal acute cardiac failure related to vandetanib: a case report with histopathological analysis. Eur J Endocrinol. 2013;168(6):K51–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Antonino Bruno is currently supported by a fellowship from the Fondazione Umberto Veronesi. Barbara Bassani is a participant of the PhD program in Biotechnology, Biosciences and Surgical Technologies, School in Biological and Medical Sciences, University of Insubria. We thank Alessandra Panvini Rosati for the secretariat assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Albini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bassani, B., Bruno, A., Macrì, N., Corradino, P., Noonan, D.M., Albini, A. (2017). The Pharmacologist’s Point of View: Mechanisms of Cardiotoxicity. In: Lestuzzi, C., Oliva, S., Ferraù, F. (eds) Manual of Cardio-oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-40236-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40236-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40234-5

  • Online ISBN: 978-3-319-40236-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics