Cardiotoxicity: Hypertension

  • Maurizio Garozzo
  • Anna Clementi
  • Giorgio Battaglia


Chemotherapy agents have been widely used for a long time in the fight against cancer, improving progression-free survival and reducing mortality of about 20% in the United States in the last years Anyway, extensive cancer research has demonstrated that the use of new biologic drugs might be indicated in patients with neoplasia, in particular in the setting of metastatic cancer.Renal surgery has represented the first line of treatment for renal cancer for years, thus inducing a reduction in the number of nephrons, and consequently the development or the worsening of chronic kidney insufficiency and hypertension. The AIOM (Italian Association of Medical Oncology) guidelines have recently reported that the treatment with Interferon α and/or Interleukin-2 does not improve global survival of patients with renal cancer when compared with surgical intervention. Therefore, renal cancer represents a possible target of biologic chemotherapy drugs, which have been already demonstrated to be effective in case of renal metastatic carcinoma.Despite a favourable toxicity profile, these new chemotherapeutic agents may present side effects, particularly on cardiovascular and renal systems. In this chapter, we will analyze the cardiovascular and renal adverse events related to the new biologic chemotherapy agents..


  1. 1.
    Cancer Treatment & Survivorship Facts & Figures 2014–2015. ►
  2. 2.
    Zhu X, Wu S, Dahut WL, Parikh CR. Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis. 2007;49:186–93.CrossRefPubMedGoogle Scholar
  3. 3.
    Izzedine H, Rixe O, Billemont B, Baumelou A, Deray G. Angiogenesis inhibitor therapies: focus on kidney toxicity and hypertension. Am J Kidney Dis. 2007;50:203–18.CrossRefPubMedGoogle Scholar
  4. 4.
    Yang JC, Haworth L, Sherry RM, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med. 2003;349:427–34.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Escudier B, Pluzanska A, Koralweski P, AVOREN Trial Investigators, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet. 2007;370:2103–11.CrossRefPubMedGoogle Scholar
  6. 6.
    Tang P, Cohen SJ, Bjarnason GA, et al. Phase II trial of aflibercept (VEGF Trap) in previously treated patients with metastatic colorectal cancer (MCRC): a PMH phase II consortium trial. J Clin Oncol. 2008;26(Suppl.).Google Scholar
  7. 7.
    Van Cutsem E, Rivera F, Berry S, Kretzschmar A, Michael M, DiBartolomeo M, Mazier MA, Canon JL, Georgoulias V, Peeters M, Bridgewater J, Cunningham D. Safety and efficacy of first-line bevacizumab with FOLFOX, XELOX, FOLFIRI and fluoropyrimidines in metastatic colorectal cancer: the BEAT study. Ann Oncol. 2009;20(11):1842–7. doi: 10.1093/annonc/mdp233. Epub 2009 Apr 30.CrossRefPubMedGoogle Scholar
  8. 8.
    Izzedine H, Massard C, Spano JP, Goldwasser F, Khayat D, Soria JC. VEGF signalling inhibition-induced proteinuria: mechanisms, significance and management. Eur J Cancer. 2010;46(2):439–48.CrossRefPubMedGoogle Scholar
  9. 9.
    Berruti A, Fazio N, Ferrero A, Brizzi MP, Volante M, Nobili E, Tozzi L, Bodei L, Torta M, D’Avolio A, Priola AM, Birocco N, Amoroso V, Biasco G, Papotti M, Dogliotti L. Bevacizumab plus octreotide and metronomic capecitabine in patients with metastatic well-to-moderately differentiated neuroendocrine tumors: the xelbevoct study. BMC Cancer. 2014;14:184.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Goncalves JG, de Braganca AC, Canale D, et al. Vitamin D deficiency aggravates chronic kidney disease progression after ischemic acute kidney injury. PLoS One. 2014;9:e107228.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Humalda JK, Goldsmith DJA, Thadhani R, de Borst MH. Vitamin D analogues to target residual proteinuria: potential impact on cardiorenal outcomes. Nephrol Dial Transplant. 2015;30:1988–94.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Patel TV, Morgan JA, Demetri GD, et al. A preeclampsia-like syndrome characterized by reversible hypertension and proteinuria induced by the multitargeted kinase inhibitors sunitinib and sorafenib. J Natl Cancer Inst. 2008;100:282–4.CrossRefPubMedGoogle Scholar
  13. 13.
    Eremina V, Sood M, Haigh J, et al. Glomerular specific alterations of VEGF—a expression lead to distinct congenital and acquired renal diseases. J Clin Invest. 2003;111(5):707–16.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–58.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Miller KD, Chap LI, Holmes FA, et al. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol. 2005;23:792–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Di Lorenzo G, Autorino R, Bruni G, et al. Cardiovascular toxicity following sunitinib therapy in metastatic renal cell carcinoma: a multicenter analysis. Ann Oncol. 2009;20:1535–42.CrossRefPubMedGoogle Scholar
  17. 17.
    Di Lorenzo G, Porta C, Bellmunt J, Sternberg C, Kirkali Z, Staehler M, Joniau S, Montorsi F, Buonerba C. Toxicities of targeted therapy and their management in kidney cancer. Eur Urol. 2011;59:526–40.CrossRefPubMedGoogle Scholar
  18. 18.
    Rixe O, Billemont B, Izzedine H. Hypertension as a predictive factor of sunitinib activity. Ann Oncol. 2007;18:1117–25.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhu X, Stergiopoulos K, Wu S. Risk of hypertension and renal dysfunction with an angiogenesis inhibitor sunitinib: systematic review and meta-analysis. Acta Oncol. 2009;48:9–17.CrossRefPubMedGoogle Scholar
  20. 20.
    Moreo A, Vallerio P, Ricotta R, Stucchi M, Pozzi M, Musca F, Meani P, Maloberti A, Facchetti R, Di Bella S, Giganti MO, Sartore-Bianchi A, Siena S, Mancia G, Giannattasio C. Effects of cancer therapy targeting vascular endothelial growth factor receptor on central blood pressure and cardiovascular system. Am J Hypertens. 2016 Feb;29(2):158–62.Google Scholar
  21. 21.
    Rini BI, Cohen DP, Lu DR, Chen I, Hariharan S, Gore ME, Figlin RA, Baum MS, Motzer RJ. Hypertension as a biomarker of efficacy in patients with metastatic renal cell carcinoma treated with sunitinib. J Natl Cancer Inst. 2011;103(9):763–73.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Porta C, Szczylik C. Tolerability of first-line therapy for metastatic renal cell carcinoma. Cancer Treat Rev. 2009;35(3):297–307.CrossRefPubMedGoogle Scholar
  23. 23.
    Hicklin DJ, Lee ME. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005;23(5):1011–27.CrossRefPubMedGoogle Scholar
  24. 24.
    Schneider BP, Wang M, Radovich M, Sledge GW, Badve S, Thor A, Flockhart DA, Hancock B, Davidson N, Gralow J, Dickler M, Perez EA, Cobleigh M, Shenkier T, Edgerton S, Miller KD. Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus bevacizumab in advanced breast cancer: ECOG 2100. J Clin Oncol. 2008;26(28):4672–8.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chu TF, Rupnick MA, Kerkela R, et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet. 2007;370(9604):2011–9.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gore ME, Szczylik C, Porta C, et al. Safety and efficacy of sunitinib for metastatic renal-cell carcinoma: an expanded-access trial. Lancet Oncol. 2009;10:757–63.CrossRefPubMedGoogle Scholar
  27. 27.
    Richards CJ, Je Y, Schutz FAB, et al. Incidence and risk of congestive heart failure in patients with renal and nonrenal cell carcinoma treated with sunitinib. J Clin Oncol. 2011;29(25):3450–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Schmidinger M, Zielinski CC, Vogl UM, et al. Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2008;26(32):5204–12.CrossRefPubMedGoogle Scholar
  29. 29.
    Molinaro M, Ameri P, Marone G, Petretta M, Abete P, Di Lisa F, De Placido S, Bonaduce D, Tocchetti CG. Recent advances on pathophysiology, diagnostic and therapeutic insights in cardiac dysfunction induced by antineoplastic drugs. Biomed Res Int. 2015;2015:138148. doi: 10.1155/2015/138148. Epub 2015 Oct.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ranpura V, Hapani S, Chuang J, Wu S. Risk of cardiac ischemia and arterial thromboembolic events with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis of randomized controlled trials. Acta Oncol. 2010;49:287–97.CrossRefPubMedGoogle Scholar
  31. 31.
    Pouessel D, Culine S. High frequency of intracerebral hemorrhage in metastatic renal carcinoma patients with brain metastases treated with tyrosine kinase inhibitors targeting the vascular endothelial growth factor receptor. Eur Urol. 2008;53:376–81.CrossRefPubMedGoogle Scholar
  32. 32.
    Nalluri SR, Chu D, Keresztes R, Zhu X, Wu S. Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis. JAMA. 2008;300:2277–85.CrossRefPubMedGoogle Scholar
  33. 33.
    Sher AF, Chu D, Wu S. Risk of bleeding in cancer patients treated with the angiogenesis inhibitor bevacizumab: a meta-analysis. J Clin Oncol. 2009;27:15s.CrossRefGoogle Scholar
  34. 34.
    Choueiri TK, Schutz FA, Je Y, Rosenberg JE, Bellmunt J. Risk of arterial thromboembolic events with sunitinib and sorafenib: a systematic review and meta-analysis of clinical trials. J Clin Oncol. 2010;28:2280–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Je Y, Schutz FA, Choueiri TK. Risk of bleeding with vascular endothelial growth factor receptor tyrosine-kinase inhibitors sunitinib and sorafenib: a systematic review and meta-analysis of clinical trials. Lancet Oncol. 2009;10:967–74.CrossRefPubMedGoogle Scholar
  36. 36.
    Bronte E, Bronte G, Novo G, Bronte F, Bavetta MG, Lo Re G, Brancatelli G, Bazan V, Natoli C, Novo S, Russo A. What links BRAF to the heart function? New insights from the cardiotoxicity of BRAF inhibitors in cancer treatment. Oncotarget. 2015;6(34):35589–601.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against her2 for metastatic breast cancer that overexpresses HER2. New Engl J Med. 2001;344(11):783–92.CrossRefPubMedGoogle Scholar
  38. 38.
    Tocchetti CG, Ragone G, Coppola C, et al. Detection, monitoring, and management of trastuzumab-induced left ventricular dysfunction: an actual challenge. Eur J Heart Fail. 2012;14(2):130–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Ewer MS, Lippman SM. Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity. J Clin Oncol. 2005;23(13):2900–2.CrossRefPubMedGoogle Scholar
  40. 40.
    Odiete O, Hill MF, Sawyer DB. Neuregulin in cardiovascular development and disease. Circ Res. 2012;111(10):1376–85.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Maurizio Garozzo
    • 1
  • Anna Clementi
    • 2
  • Giorgio Battaglia
    • 1
  1. 1.U.O.C. Nefrologia e Dialisi, Ospedale Santa Marta e Santa VeneraAcirealeItaly
  2. 2.U.O.C. Nefrologia e Dialisi, Ospedale San Giovanni Di DioAgrigentoItaly

Personalised recommendations