Logic & Proofs for Cyber-Physical Systems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9706)


Cyber-physical systems (CPS) combine cyber aspects such as communication and computer control with physical aspects such as movement in space, which arise frequently in many safety-critical application domains, including aviation, automotive, railway, and robotics. But how can we ensure that these systems are guaranteed to meet their design goals, e.g., that an aircraft will not crash into another one?

This paper highlights some of the most fascinating aspects of cyber-physical systems and their dynamical systems models, such as hybrid systems that combine discrete transitions and continuous evolution along differential equations. Because of the impact that they can have on the real world, CPSs deserve proof as safety evidence.

Multi-dynamical systems understand complex systems as a combination of multiple elementary dynamical aspects, which makes them natural mathematical models for CPS, since they tame their complexity by compositionality. The family of differential dynamic logics achieves this compositionality by providing compositional logics, programming languages, and reasoning principles for CPS. Differential dynamic logics, as implemented in the theorem prover KeYmaera X, have been instrumental in verifying many applications, including the Airborne Collision Avoidance System ACAS X, the European Train Control System ETCS, automotive systems, mobile robot navigation, and a surgical robot system for skull-base surgery. This combination of strong theoretical foundations with practical theorem proving challenges and relevant applications makes Logic for CPS an ideal area for compelling and rewarding research.


Hybrid System Logical Foundation Differential Invariant Surgical Robot System Stochastic Hybrid System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alur, R.: Formal verification of hybrid systems. In: Chakraborty, S., Jerraya, A., Baruah, S.K., Fischmeister, S. (eds.) EMSOFT, pp. 273–278. ACM (2011)Google Scholar
  2. 2.
    Alur, R.: Principles of Cyber-Physical Systems. MIT Press, Cambridge (2015)Google Scholar
  3. 3.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoret. Comput. Sci. 138(1), 3–34 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid systems. Proc. IEEE 88(7), 971–984 (2000)CrossRefGoogle Scholar
  5. 5.
    Branicky, M.S.: General hybrid dynamical systems: modeling, analysis, and control. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 186–200. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  6. 6.
    Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification and debugging. Commun. ACM 52(11), 74–84 (2009)CrossRefGoogle Scholar
  7. 7.
    Davoren, J.M., Nerode, A.: Logics for hybrid systems. IEEE 88(7), 985–1010 (2000)CrossRefGoogle Scholar
  8. 8.
    Doyen, L., Frehse, G., Pappas, G.J., Platzer, A.: Verification of hybrid systems. In: Clarke, E.M., Henzinger, T.A., Veith, H. (eds.) Handbook of Model Checking, Chap. 28. Springer, Heidelberg (2017)Google Scholar
  9. 9.
    Frege, G.: Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Verlag von Louis Nebert, Halle (1879)Google Scholar
  10. 10.
    Gentzen, G.: Untersuchungen über das logische Schließen. I. Math. Zeit. 39(2), 176–210 (1935)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Henzinger, T.A., Sifakis, J.: The discipline of embedded systems design. Computer 40(10), 32–40 (2007)CrossRefGoogle Scholar
  12. 12.
    Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE Computer Society, Los Alamitos (1996)Google Scholar
  13. 13.
    Hilbert, D.: Die Grundlagen der Mathematik. Abhandlungen aus dem Seminar der Hamburgischen Universität 6(1), 65–85 (1928)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–580 (1969)CrossRefzbMATHGoogle Scholar
  15. 15.
    Jeannin, J.-B., Ghorbal, K., Kouskoulas, Y., Gardner, R., Schmidt, A., Zawadzki, E., Platzer, A.: A formally verified hybrid system for the next-generation airborne collision avoidance system. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 21–36. Springer, Heidelberg (2015)Google Scholar
  16. 16.
    Kapteyn, J.C.: First attempt at a theory of the arrangement and motion of the sidereal system. Astrophys. J. 55, 302 (1922)CrossRefGoogle Scholar
  17. 17.
    Larsen, K.G.: Verification and performance analysis for embedded systems. In: Chin, W., Qin, S. (eds.) TASE 2009, Third IEEE International Symposium on Theoretical Aspects of Software Engineering, 29–31 July 2009, pp. 3–4. IEEE Computer Society, Tianjin, China (2009)Google Scholar
  18. 18.
    Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems - A Cyber-Physical Systems Approach. Lulu Press, Raleigh (2013). Google Scholar
  19. 19.
    Lie, S.: Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen. Teubner, Leipzig (1893)CrossRefzbMATHGoogle Scholar
  20. 20.
    Lunze, J., Lamnabhi-Lagarrigue, F. (eds.): Handbook of Hybrid Systems Control: Theory, Tools, Applications. Cambridge University Press, Cambridge (2009)zbMATHGoogle Scholar
  21. 21.
    Maler, O.: Control from computer science. Ann. Rev. Control 26(2), 175–187 (2002)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Mitsch, S., Platzer, A.: ModelPlex: verified runtime validation of verified cyber-physical system models. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 199–214. Springer, Heidelberg (2014)Google Scholar
  23. 23.
    Nerode, A.: Logic and control. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 585–597. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Nerode, A., Kohn, W.: Models for hybrid systems: automata, topologies, controllability, observability. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 317–356. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  25. 25.
    NITRD CPS Senior Steering Group: CPS vision statement. NITRD (2012)Google Scholar
  26. 26.
    Pappas, G.J.: Wireless control networks: modeling, synthesis, robustness, security. In: Caccamo, M., Frazzoli, E., Grosu, R. (eds.) Proceedings of the 14th ACM International Conference on Hybrid Systems: Computation and Control, HSCC 2011, April 12–14, 2011, pp. 1–2. ACM, Chicago (2011)Google Scholar
  27. 27.
    Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2), 143–189 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log. Comput. 20(1), 309–352 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Platzer, A.: Stochastic differential dynamic logic for stochastic hybrid programs. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 446–460. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    Platzer, A.: Quantified differential dynamic logic for distributed hybrid systems. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 469–483. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  31. 31.
    Platzer, A.: The complete proof theory of hybrid systems. In: LICS, pp. 541–550. IEEE (2012)Google Scholar
  32. 32.
    Platzer, A.: Logics of dynamical systems. In: LICS, pp. 13–24. IEEE (2012)Google Scholar
  33. 33.
    Platzer, A.: The structure of differential invariants and differential cut elimination. Log. Meth. Comput. Sci. 8(4), 1–38 (2012)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Platzer, A.: Differential game logic. ACM Trans. Comput. Log. 17(1), 1: 1–1: 51 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Platzer, A.: A uniform substitution calculus for differential dynamic logic. In: Felty, A., Middeldorp, A. (eds.) CADE. LNCS, vol. 9195, pp. 467–481. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  36. 36.
    Platzer, A., Clarke, E.M.: Formal verification of curved flight collision avoidance maneuvers: a case study. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 547–562. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  37. 37.
    Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: FOCS, pp. 109–121. IEEE (1976)Google Scholar
  38. 38.
    President’s Council of Advisors on Science and Technology: Leadership under challenge: Information technology R&D in a competitive world. An Assessment of the Federal Networking and Information Technology R&D, Program, August 2007Google Scholar
  39. 39.
    Scott, D., Strachey, C.: Toward a mathematical semantics for computer languages? Technical report, PRG-6, Oxford Programming Research Group (1971)Google Scholar
  40. 40.
    Smullyan, R.M.: First-Order Logic. Dover, Mineola (1968)CrossRefzbMATHGoogle Scholar
  41. 41.
    Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach. Springer, New York (2009)CrossRefzbMATHGoogle Scholar
  42. 42.
    Tiwari, A.: Abstractions for hybrid systems. Form. Meth. Syst. Des. 32(1), 57–83 (2008)CrossRefzbMATHGoogle Scholar
  43. 43.
    Tiwari, A.: Logic in software, dynamical and biological systems. In: LICS, pp. 9–10. IEEE Computer Society (2011)Google Scholar
  44. 44.
    Wing, J.M.: Five deep questions in computing. Commun. ACM 51(1), 58–60 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Computer Science DepartmentCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations