Gen2sat: An Automated Tool for Deciding Derivability in Analytic Pure Sequent Calculi

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9706)


Gen2sat [1] is an efficient and generic tool that can decide derivability for a wide variety of propositional non-classical logics given in terms of a sequent calculus. It contributes to the line of research on computer-supported tools for investigation of logics in the spirit of the “logic engineering” paradigm. Its generality and efficiency are made possible by a reduction of derivability in analytic pure sequent calculi to SAT. This also makes Gen2sat a “plug-and-play” tool so it is compatible with any standard off-the-shelf SAT solver and does not require any additional logic-specific resources. We describe the implementation details of Gen2sat and an evaluation of its performance, as well as a pilot study for using it in a “hands on” assignment for teaching the concept of sequent calculi in a logic class for engineering practitioners.


Theorem Prover Sequent Calculus Paraconsistent Logic Code Coverage Logic Engineering 


  1. 1.
  2. 2.
    Areces, C.E.: Logic engineering: the case of description and hybrid logics. Institute for Logic, Language and Computation (2000)Google Scholar
  3. 3.
    Avron, A.: Gentzen-type systems, resolution, tableaux. J. Autom. Reasoning 10(2), 265–281 (1993)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Avron, A., Konikowska, B., Zamansky, A.: Efficient reasoning with inconsistent information using C-systems. Inf. Sci. 296, 219–236 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Baaz, M., Fermüller, C.G., Salzer, G., Zach, R.: Multlog 1.0: towards an expert system for many-valued logics. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 226–230. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  6. 6.
    Carnielli, W., Coniglio, M.E., Marcos, J.: Logics of formal inconsistency. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 14, pp. 1–93. Springer, New York (2007)CrossRefGoogle Scholar
  7. 7.
    Ciabattoni, A., Lahav, O., Spendier, L., Zamansky, A.: Automated support for the investigation of paraconsistent and other logics. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734, pp. 119–133. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Ciabattoni, A., Spendier, L.: Tools for the investigation of substructural and paraconsistent logics. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 18–32. Springer, Heidelberg (2014)Google Scholar
  9. 9.
    Comon-Lundh, H., Shmatikov, V.: Intruder deductions, constraint solving and insecurity decision in presence of exclusive OR. In: 2003 Proceedings of the 18th Annual IEEE Symposium on Logic in Computer Science, pp. 271–280, June 2003Google Scholar
  10. 10.
    Cotrini, C., Gurevich, Y.: Basic primal infon logic. J. Logic Comput. 26(1), 117–141 (2013)MATHGoogle Scholar
  11. 11.
    da Costa, N.C.: Sistemas formais inconsistentes, vol. 3. Editora UFPR (1993)Google Scholar
  12. 12.
    Degtyarev, A., Voronkov, A.: The inverse method. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, pp. 179–272. MIT Press, Cambridge (2001)CrossRefGoogle Scholar
  13. 13.
    Gasquet, O., Herzig, A., Longin, D., Sahade, M.: LoTREC: logical tableaux research engineering companion. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 318–322. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Hoffmann, M., Iachelini, G.: Code coverage analysis for eclipse. In: Eclipse Summit Europe (2007)Google Scholar
  15. 15.
    Kawai, H.: Sequential calculus for a first order infinitary temporal logic. Math. Logic Q. 33(5), 423–432 (1987)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lahav, O., Zohar, Y.: SAT-based decision procedure for analytic pure sequent calculi. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 76–90. Springer, Heidelberg (2014)Google Scholar
  17. 17.
    Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. J. Satisfiability Boolean Mode. Comput. 7, 59–64 (2010)Google Scholar
  18. 18.
    Neto, A., Finger, M.: Effective prover for minimal inconsistency logic. In: Bramer, M. (ed.) Artificial Intelligence in Theory and Practice. IFIP, vol. 217, pp. 465–474. Springer US, London (2006)CrossRefGoogle Scholar
  19. 19.
    Neto, A., Finger, M.: Kems-a multi-strategy tableau prover. In: Proceedings of the VI Best MSc Dissertation/PhD Thesis Contest (CTDIA 2008), Salvador (2008)Google Scholar
  20. 20.
    Neto, A., Kaestner, C.A.A., Finger, M.: Towards an efficient prover for the paraconsistent logic C1. Electron. Notes Theoret. Comput. Sci. 256, 87–102 (2009)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Ohlbach, H.J.: Computer support for the development and investigation of logics. Logic J. IGPL 4(1), 109–127 (1996)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Olivetti, N., Pozzato, G.L.: NESCOND: an implementation of nested sequent calculi for conditional logics. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 511–518. Springer, Heidelberg (2014)Google Scholar
  23. 23.
    Page, R.L.: Software is discrete mathematics. ACM SIGPLAN Not. 38, 79–86 (2003). ACMCrossRefGoogle Scholar
  24. 24.
    Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: Mettel2: towards a tableau prover generation platform. In: PAAR@ IJCAR, pp. 149–162 (2012)Google Scholar
  25. 25.
    Zamansky, A., Farchi, E.: Teaching logic to information systems students: challenges and opportunities. In: Fourth International Conference on Tools for Teaching Logic, TTL (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Tel Aviv UniversityTel AvivIsrael
  2. 2.Haifa UniversityHaifaIsrael

Personalised recommendations