Skip to main content

System Description: GAPT 2.0

Part of the Lecture Notes in Computer Science book series (LNAI,volume 9706)

Abstract

GAPT (General Architecture for Proof Theory) is a proof theory framework containing data structures, algorithms, parsers and other components common in proof theory and automated deduction. In contrast to automated and interactive theorem provers whose focus is the construction of proofs, GAPT concentrates on the transformation and further processing of proofs. In this paper, we describe the current 2.0 release of GAPT.

Keywords

  • Interactive Theorem Prover
  • Tree Grammars
  • Sequent Calculus Proof
  • first-order Provers
  • CADE ATP System Competition (CASC)

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supported by the Vienna Science Fund (WWTF) project VRG12-04, the Austrian Science Fund (FWF) projects P25160 and W1255-N23, and the ERC Advanced Grant ProofCert.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-40229-1_20
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-40229-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. 1.

    For a list of changes and new features in the 2.0 release specifically, please refer to the release notes: https://github.com/gapt/gapt/blob/master/RELEASE-NOTES.md.

  2. 2.

    We use Sat4j as it is bundled with GAPT. To use another solver, it is enough to replace Sat4j with Glucose or MiniSAT in the source code.

  3. 3.

    This example is included in the examples/scriptability directory in the binary distribution of GAPT.

References

  1. Andrews, P.B.: Resolution in type theory. J. Symbolic Log. 36(3), 414–432 (1971). doi:10.2307/2269949

    MathSciNet  CrossRef  MATH  Google Scholar 

  2. Baaz, M., Hetzl, S., Leitsch, A., Richter, C., Spohr, H.: CERES: an analysis of fürstenberg’s proof of the infinity of primes. Theoret. Comput. Sci. 403(2–3), 160–175 (2008)

    MathSciNet  CrossRef  MATH  Google Scholar 

  3. Baaz, M., Leitsch, A.: Cut-elimination and redundancy-elimination by resolution. J. Symbolic Comput. 29(2), 149–176 (2000)

    MathSciNet  CrossRef  MATH  Google Scholar 

  4. Boespflug, M., Carbonneaux, Q., Hermant, O.: The \(\lambda {\Pi }\)-calculus modulo as a universal proof language. In: Pichardie, D., Weber, T. (eds.) Proceedings of PxTP2012: Proof Exchange for Theorem Proving, pp. 28–43 (2012)

    Google Scholar 

  5. Dunchev, C., Leitsch, A., Libal, T., Riener, M., Rukhaia, M., Weller, D., Paleo, B.W.: PROOFTOOL: a GUI for the GAPT framework. In: Kaliszyk, C., Lüth, C. (eds.) Proceedings 10th International Workshop on User Interfaces for Theorem Provers (UITP) 2012, EPTCS, vol. 118, pp. 1–14 (2012)

    Google Scholar 

  6. Eberhard, S., Hetzl, S.: Inductive theorem proving based on tree grammars. Ann. Pure Appl. Log. 166(6), 665–700 (2015)

    MathSciNet  CrossRef  MATH  Google Scholar 

  7. Hetzl, S.: Project presentation: algorithmic structuring and compression of proofs (ASCOP). In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS, vol. 7362, pp. 438–442. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  8. Hetzl, S., Leitsch, A., Reis, G., Tapolczai, J., Weller, D.: Introducing quantified cuts in logic with equality. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 240–254. Springer, Heidelberg (2014)

    Google Scholar 

  9. Hetzl, S., Leitsch, A., Reis, G., Weller, D.: Algorithmic introduction of quantified cuts. Theoret. Comput. Sci. 549, 1–16 (2014)

    MathSciNet  CrossRef  MATH  Google Scholar 

  10. Hetzl, S., Leitsch, A., Weller, D.: CERES in higher-order logic. Ann. Pure Appl. Log. 162(12), 1001–1034 (2011)

    MathSciNet  CrossRef  MATH  Google Scholar 

  11. Hetzl, S., Leitsch, A., Weller, D.: Towards algorithmic cut-introduction. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 228–242. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  12. Hetzl, S., Libal, T., Riener, M., Rukhaia, M.: Understanding resolution proofs through Herbrand’s theorem. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX 2013. LNCS, vol. 8123, pp. 157–171. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  13. Hurd, J.: The OpenTheory standard theory library. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 177–191. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  14. Libal, T., Riener, M., Rukhaia, M.: Advanced Proof Viewing in ProofTool. In: Benzmüller, C., Paleo, B.W. (eds.) Proceedings of the 11th Workshop on User Interfaces for Theorem Provers (UITP) 2014, EPTCS, vol. 167, pp. 35–47 (2014)

    Google Scholar 

  15. Miller, D.: A compact representation of proofs. Stud. Logica 46(4), 347–370 (1987)

    MathSciNet  CrossRef  MATH  Google Scholar 

  16. Miller, D.: ProofCert: broad spectrum proof certificates. An ERC Advanced Grant funded for the five years 2012–2016. http://www.lix.polytechnique.fr/Labo/Dale.Miller/ProofCert.pdf

  17. Reis, G.: Importing SMT and connection proofs as expansion trees. In: Kaliszyk, C., Paskevich, A. (eds.) Proceedings Fourth Workshop on Proof eXchange for Theorem Proving (PxTP), EPTCS, vol. 186, pp. 3–10 (2015)

    Google Scholar 

  18. Stasko, J., Zhang, E.: Focus+context display and navigation techniques for enhancing radial, space-filling hierarchy visualizations. In: IEEE Symposium on Information Visualization, 2000, InfoVis 2000, pp. 57–65 (2000)

    Google Scholar 

  19. Sutcliffe, G.: The TPTP world – infrastructure for automated reasoning. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 1–12. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  20. Sutcliffe, G., Suttner, C.: The State of CASC. AI Commun. 19(1), 35–48 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Sutcliffe, G., Schulz, S., Claessen, K., Van Gelder, A.: Using the TPTP language for writing derivations and finite interpretations. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 67–81. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the following students, researchers, and software developers for their contributions to the development of GAPT (in alphabetic order): Alexander Birch, Cvetan Dunchev, Alexander Leitsch, Tomer Libal, Bernhard Mallinger, Olivier Roland, Mikheil Rukhaia, Christoph Spörk, Janos Tapolczai, Daniel Weller, and Bruno Woltzenlogel Paleo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Ebner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ebner, G., Hetzl, S., Reis, G., Riener, M., Wolfsteiner, S., Zivota, S. (2016). System Description: GAPT 2.0. In: Olivetti, N., Tiwari, A. (eds) Automated Reasoning. IJCAR 2016. Lecture Notes in Computer Science(), vol 9706. Springer, Cham. https://doi.org/10.1007/978-3-319-40229-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40229-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40228-4

  • Online ISBN: 978-3-319-40229-1

  • eBook Packages: Computer ScienceComputer Science (R0)