Skip to main content

Schematic Cut Elimination and the Ordered Pigeonhole Principle

  • Conference paper
  • First Online:
Book cover Automated Reasoning (IJCAR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9706))

Included in the following conference series:

Abstract

Schematic cut-elimination is a method of cut-elimination which can handle certain types of inductive proofs. In previous work, an attempt was made to apply the schematic CERES method to a formal proof with an arbitrary number of \(\varPi _{2}\) cuts (a recursive proof encapsulating the infinitary pigeonhole principle). However the derived schematic refutation for the characteristic clause set of the proof could not be expressed in the schematic resolution calculus developed so far. Without this formalization a Herbrand system cannot be algorithmically extracted. In this work, we provide a restriction of infinitary pigeonhole principle, the ECA-schema (Eventually Constant Assertion), or ordered infinitary pigeonhole principle, whose analysis can be completely carried out in the existing framework of schematic CERES. This is the first time the framework is used for proof analysis. From the refutation of the clause set and a substitution schema we construct a Herbrand system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baaz, M., Hetzl, S., Leitsch, A., Richter, C., Spohr, H.: Ceres: An analysis of Fürstenberg’s proof of the infinity of primes. Theoret. Comput. Sci. 403(2–3), 160–175 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baaz, M., Leitsch, A.: On skolemization and proof complexity. Fundamenta Informaticae 20(4), 353–379 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Baaz, M., Leitsch, A.: Cut-elimination and redundancy-elimination by resolution. J. Symbolic Comput. 29, 149–176 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baaz, M., Leitsch, A.: Methods of Cut-Elimination. Springer Publishing Company, Incorporated (2013)

    Google Scholar 

  5. Brotherston, J.: Cyclic proofs for first-order logic with inductive definitions. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 78–92. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J. Logic Comput. 22, 1177–1216 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Bundy, A.: The automation of proof by mathematical induction. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 845–911. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  8. Cerna, D., Leitsch, A.: Analysis of clause set schema aided by automated theorem proving: Acase study (2015). arXiv:1503.08551v1 [cs.LO]

  9. Cerna, D., Leitsch, A.: Schematic cut elimination and the ordered pigeonhole principle [extended version] (2016). arXiv:1601.06548 [math.LO]

    Google Scholar 

  10. Cerna, D.M.: Advances in schematic cut elimination. Ph.D. thesis, Technical University of Vienna (2015). http://media.obvsg.at/p-AC12246421-2001

  11. Comon, H.: Inductionless induction. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 913–962. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  12. Dunchev, C.: Automation of cut-elimination in proof schemata. Ph.D. thesis, Technical University of Vienna (2012)

    Google Scholar 

  13. Dunchev, C., Leitsch, A., Rukhaia, M., Weller, D.: Cut-elimination and proof schemata. In: Aher, M., Hole, D., Jeřábek, E., Kupke, C. (eds.) TbiLLC 2013. LNCS, vol. 8984, pp. 117–136. Springer, Heidelberg (2015)

    Google Scholar 

  14. Gentzen, G.: Untersuchungen über das logische Schließen I. Math. Z. 39(1), 176–210 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  15. Girard, J.-Y.: Proof Theory and Logical Complexity. Studies in Proof Theory, vol. 1. Bibliopolis, Naples (1987)

    MATH  Google Scholar 

  16. Mcdowell, R., Miller, D.: Cut-elimination for a logic with definitions and induction. Theoret. Comput. Sci. 232, 2000 (1997)

    MathSciNet  Google Scholar 

  17. Takeuti, G.: Proof Theory. Studies in Logic and the Foundations of Mathematics, vol. 81. American Elsevier Pub., New York (1975)

    MATH  Google Scholar 

  18. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 140–145. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Cerna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Cerna, D.M., Leitsch, A. (2016). Schematic Cut Elimination and the Ordered Pigeonhole Principle . In: Olivetti, N., Tiwari, A. (eds) Automated Reasoning. IJCAR 2016. Lecture Notes in Computer Science(), vol 9706. Springer, Cham. https://doi.org/10.1007/978-3-319-40229-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40229-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40228-4

  • Online ISBN: 978-3-319-40229-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics