Advertisement

Colors Make Theories Hard

Conference paper
  • 700 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9706)

Abstract

The satisfiability problem for conjunctions of quantifier-free literals in first-order theories \(\mathcal {T}\) of interest–“\(\mathcal {T}\) -solving” for short–has been deeply investigated for more than three decades from both theoretical and practical perspectives, and it is currently a core issue of state-of-the-art SMT solving. Given some theory \(\mathcal {T}\) of interest, a key theoretical problem is to establish the computational (in)tractability of \(\mathcal {T}\)-solving, or to identify intractable fragments of \(\mathcal {T}\) .

In this paper we investigate this problem from a general perspective, and we present a simple and general criterion for establishing the NP-hardness of \(\mathcal {T}\)-solving, which is based on the novel concept of “colorer” for a theory \(\mathcal {T}\).

As a proof of concept, we show the effectiveness and simplicity of this novel criterion by easily producing very simple proofs of the NP-hardness for many theories of interest for SMT, or of some of their fragments.

Keywords

Domain Size Satisfiability Problem Colorable Theory Closed Term Candidate Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Barrett, C.W., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on demand in SAT modulo theories. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 512–526. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories, chapter 26, pp. 825–885. IOS Press, Amsterdam (2009)Google Scholar
  3. 3.
    Berman, L.: The complexity of logical theories. Theor. Comput. Sci. 11, 71 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T.A., van Rossum, P., Schulz, S., Sebastiani, R.: Mathsat: tight integration of sat and mathematical decision procedures. J. Autom. Reasoning 35(1–3), 265–293 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bradley, A., Manna, Z.: The Calculus of Computation: Decision Procedures with Applications to Verification. Springer, Heidelberg (2010)zbMATHGoogle Scholar
  6. 6.
    Bruun, H., Damm, F., Dawes, J., Hansen, B., Larsen, P., Parkin, G., Plat, N., Toetenel, H.: A formal definition of vdm-sl. Technical report, University of Leicester (1998)Google Scholar
  7. 7.
    Cyrluk, D., Möller, M.O., Rueß, H.: An efficient decision procedure for the theory of fixed-sized bit-vectors. In: Grumberg, O. (ed.) Computer Aided Verification. LNCS, vol. 1254, pp. 60–71. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  8. 8.
    Fröhlich, A., Kovásznai, G., Biere, A.: More on the complexity of quantifier-free fixed-size bit-vector logics with binary encoding. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 378–390. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  10. 10.
    Karmakar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4(4), 373 (1984)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kovásznai, G., Fröhlich, A., Biere, A.: On the complexity of fixed-size bit-vector logics with binary encoded bit-width. In: Proceedings of the SMT (2012)Google Scholar
  12. 12.
    Kroening, D., Rümmer, P., Weissenbacher, G.: A proposal for a theory of finite sets, lists, and maps for the SMT-LIB standard. In: Proceedings of the SMT Workshop (2007)Google Scholar
  13. 13.
    Kroening, D., Strichman, O.: Decision Procedures. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  14. 14.
    Kuncak, V., Rinard, M.: Towards efficient satisfiability checking for Boolean algebra with Presburger arithmetic. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 215–230. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Lahiri, S.K., Musuvathi, M.: An efficient decision procedure for UTVPI constraints. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 168–183. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Nelson, G., Oppen, D.: Simplification by cooperating decision procedures. ACM Trans. Program. Lang. Syst. 1(2), 245–257 (1979)CrossRefzbMATHGoogle Scholar
  17. 17.
    Nelson, G., Oppen, D.: Fast decision procedures based on congruence closure. J. ACM 27(2), 356–364 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Nieuwenhuis, R., Oliveras, A.: DPLL(T) with exhaustive theory propagation and its application to difference logic. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 321–334. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Oppen, D.: Reasoning about recursively defined data structures. J. ACM 27(3), 403–411 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Oppen, D.C.: Complexity, convexity and combinations of theories. Theor. Comput. Sci. 12, 291–302 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Pratt, V.R.: Two Easy Theories Whose Combination is Hard. Technical report, M.I.T. (1977)Google Scholar
  22. 22.
    Rümmer, P., Wahl, T.: An SMT-LIB theory of binary floating-point arithmetic. In: Proceedings of the SMT (2010)Google Scholar
  23. 23.
    Sebastiani, R.: Lazy satisfiability modulo theories. J. Satisfiability Boolean Model. Comput. (JSAT) 3(3–4), 141–224 (2007)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Sebastiani, R.: Colors Make Theories hard. Technical Report DISI-16-001, DISI, University of Trento, Extended version. http://disi.unitn.it/rseba/ijcar16extended.pdf
  25. 25.
    Shostak, R.: An algorithm for reasoning about equality. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, pp. 526–527 (1977)Google Scholar
  26. 26.
    Shostak, R.: A pratical decision procedure for arithmetic with function symbols. J. ACM 26(2), 351–360 (1979)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.DISIUniversity of TrentoTrentoItaly

Personalised recommendations