DNA Methods to Identify Missing Persons

  • Edna Sadayo Miazato IwamuraEmail author
  • Marco Aurélio Guimarães
  • Martin Paul Evison


Since its discovery in 1985 by Alec Jeffreys, forensic DNA profiling has emerged as an immensely powerful technology. In this chapter, the development of genetic approaches to forensic human identification will be discussed in a variety of contexts, including the analysis of skeletal remains and other trace evidence. The use of autosomal, X and Y chromosome genetic loci and maternally inherited mitochondrial DNA in relationship analysis will be briefly reviewed. More recent advances in the application of single nucleotide polymorphisms (SNPs) and next-generation sequencing (NGS) to human identification, particularly in the development of ancestry informative markers (AIMS) and externally visible characteristics (EVCs), will also be introduced, with related socio-ethical issues. A range of case studies are used to illustrate application of these technologies. Forensic genetics has a range of roles in missing person cases, including homicides and human rights related investigations. It is also important in the investigation of living missing persons, including trafficked children and persons displaced due to conflict and migration.


Missing persons Human identification DNA profiling Kinship analysis STR ChrX ChrY mtDNA 


  1. Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., et al. (1981). Sequence and organization of the human mitochondrial genome. Nature, 290, 457–465.PubMedCrossRefGoogle Scholar
  2. Andrews, R. M., Kubacka, I., Chinnery, P. F., Lightowlers, R. N., Turnbull, D. M., & Howell, N. (1999). Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nature Genetics, 23(2), 147.PubMedCrossRefGoogle Scholar
  3. Auler-Bittencourt, E., Iwamura, E. S., Lima, M. J., da Silva, I. D., & dos Santos, S. E. (2015). Exploring the applicability of analysing X chromosome STRs in Brazilian admixed population. Science and Justice, 55, 323–328.PubMedCrossRefGoogle Scholar
  4. Ban, J. D. (2001). Establishing a large DNA data bank using PowerPlex 1.1 and 2.1 Systems. Review. Croatian Medical Journal, 42(3), 256–259.PubMedGoogle Scholar
  5. Barbaro, A., Cormaci, P., & Barbaro, A. (2006). X-STR typing for an identification casework. International Congress Series, 1288, 513–515.CrossRefGoogle Scholar
  6. Bornman, D. M., Hester, M. E., Schuetter, J. M., Kasoji, D. M., Minard-Smith, A., Barden, C. A., et al. (2012). Short-read, high-throughput sequencing technology for STR genotyping. Biotechnology Rapid Dispatches, 2012, 1–6.Google Scholar
  7. Bosch, E., Lee, A. C., Calafell, F., Arroyo, E., Henneman, P., de Knijff, P., et al. (2002). High resolution Y chromosome typing: 19 STRs amplified in the three multiplex reactions. Forensic Science International, 125(1), 42–51.PubMedCrossRefGoogle Scholar
  8. Butler, J. M. (2005). Forensic DNA typing (2nd ed.). New York, NY: Academic.Google Scholar
  9. Butler, J. M. (2012). Advanced topics in forensic DNA typing: Methodology. New York, NY: Academic.Google Scholar
  10. Butler, J. M. (2015). US initiatives to strengthen forensic science & international standards in forensic DNA. Forensic Science International. Genetics, 18, 4–20.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bydlowski, S. P., Moura Neto, R. S., & Muñoz, D. R. (1999). Testes de paternidade através de DNA—recomendações para laboratórios. Brazil: Sociedade Brasileira de Medicina Legal (SBML).Google Scholar
  12. Callaway, E. (2015). Hot climes yield ancient DNA. Nature, 526, 303.PubMedCrossRefGoogle Scholar
  13. Cavalli-Sforza, L. L., Menozzi, P., & Piazza, A. (1994). The history and geography of human genes. Princeton, NJ: Princeton University.Google Scholar
  14. CDV. (2016). Projeto Caminho de Volta. Retrieved from Accessed 29 Jan 2016.
  15. Chakraborty, R., Stivers, D. N., Su, B., Zhong, T., & Budowle, B. (1999). The utility of short tandem repeat loci beyond human identification: Implications for development of new DNA typing systems. Electrophoresis, 20, 1682–1696.PubMedCrossRefGoogle Scholar
  16. Chemale, G., de Freitas, J. M., Badaraco, J. L., Rosa, L. d. S., Martins, J. A., Martins, A. D., et al. (2014). Y-chromosomal STR haplotypes in a sample from Brasília, Federal District, Brazil. Forensic Science International. Genetics, 9, 3–4.CrossRefGoogle Scholar
  17. ChrX. (2016). 2.0. Retrieved from Accessed 29 Jan 2016.
  18. Claes, P., Liberton, D., Daniels, K., Rosana, K., Quillen, E., Pearson, L., et al. (2014). Modeling 3D facial shape from DNA. PLoS Genetics, 10(3), e1004224.PubMedPubMedCentralCrossRefGoogle Scholar
  19. CNP. (2001). Comitê sobre Tecnologia do DNA na ciência forense/Conselho Nacional de Pesquisa. Comissão sobre Ciências da Vida, Conselho de Biologia. Ribeirão Preto, São Paulo, Brazil: Funpec-RP.Google Scholar
  20. Coble, M. D., Loreille, O. M., Wadhams, M. J., Edson, S. M., Maynard, K., Meyer, C. E., et al. (2009). Mystery solved: The identification of the two missing romanov children using DNA analysis. PLoS One, 4(3), e4838.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Collins, M. J., Nielsen-Marsh, C. M., Hiller, J., Smith, C. I., & Roberts, J. P. (2002). The survival of organic matter in bone: A review. Archaeometry, 44(3), 383–394.CrossRefGoogle Scholar
  22. Corach, D., Sala, A., Penacino, G., Iannucci, N., Bernardi, P., Doretti, M., et al. (1997). Additional approaches to DNA typing of skeletal remains: The search for “missing” persons killed during the last dictatorship in Argentina. Electrophoresis, 18(9), 1608–1612.PubMedCrossRefGoogle Scholar
  23. Daniel, R., Santos, C., Phillips, C., Fondevila, M., van Oorschot, R. A., Carracedo, A., et al. (2015). SNaPshot of next generation sequencing for forensic SNP analysis. Forensic Science International. Genetics, 14, 50–60.PubMedCrossRefGoogle Scholar
  24. Davoren, J., Vanek, D., Konjhodzic, R., Crews, J., Huffine, E., & Parsons, T. J. (2007). Highly effective DNA extraction method for nuclear short tandem repeat testing of skeletal remains from mass graves. Croatian Medical Journal, 48(4), 478–485.PubMedPubMedCentralGoogle Scholar
  25. Eduardoff, M., Santos, C., de la Puente, M., Gross, T. E., Fondevila, M., Strobl, C., et al. (2015). Inter-laboratory evaluation of SNP-based forensic identification by massively parallel sequencing using the Ion PGM™. Forensic Science International. Genetics, 17, 110–121.PubMedCrossRefGoogle Scholar
  26. Evett, I. W., & Weir, B. S. (1998). Interpreting DNA evidence: Statistical genetics for forensic scientists. Sunderland, MA: Sinauer Associates.Google Scholar
  27. Evison, M. P., Smillie, D. M., & Chamberlain, A. T. (1997). Extraction of single-copy nuclear DNA from forensic specimens with a variety of postmortem histories. Journal of Forensic Sciences, 42, 1032–1038.PubMedCrossRefGoogle Scholar
  28. Funabashi, K. S., Barcelos, D., Visoná, I., Silva, M. S., Sousa, M. L. A. P. O., de Franco, M., et al. (2012). DNA extraction and molecular analysis of non-tumoral liver, spleen, and brain from autopsy samples: The effect of formalin fixation and paraffin embedding. Pathology, Research and Practice, 208(10), 584–591.PubMedCrossRefGoogle Scholar
  29. Gill, P., Brenner, C., Brinkmann, B., Budowle, B., Carracedo, A., Jobling, M. A., et al. (2001). DNA Commission of the International Society of Forensic Genetics: Recommendations on forensic analysis using Y-chromosome STRs. Forensic Science International, 124(1), 5–10.PubMedCrossRefGoogle Scholar
  30. Gill, P., Ivanov, P. L., Kimpton, C., Piercy, R., Benson, N., & Tully, G. (1994). Identification of the remains of the Romanov family by DNA analysis. Nature Genetics, 6(2), 130–135.PubMedCrossRefGoogle Scholar
  31. Gill, P., Whitaker, J., Flaxman, C., Brown, N., & Buckleton, J. (2000). An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA. Forensic Science International, 112(1), 17–40.PubMedCrossRefGoogle Scholar
  32. Gillio-Tos, A., De Marco, L., Fiano, V., Garcia-Bragado, F., Dikshit, R., Boffetta, P., et al. (2007). Efficient DNA extraction from 25-year-old paraffin-embedded tissues: Study of 365 samples. Pathology, 39(3), 345–348.PubMedCrossRefGoogle Scholar
  33. Godoy, C. D., Kunii, I. S., Funabashi, J. M., Cerutti, M. L. A. P. O., Sousa, D. M., Singawa, D. M., et al. (2011). Mitochondrial DNA in a population of individuals from the City of São Paulo. DNA extraction from head and pubic hair and blood. Forensic Science International: Genetics Supplement Series, 3(1), e149–e150.Google Scholar
  34. Guimarães, M. A., Francisco, R. A., Garcia, S. B., Evison, M. P., Pinheiro, M. E., De, C., et al. (2016b). Forensic investigation, truth and trust in the context of transitional justice in Brazil (forthcoming).Google Scholar
  35. Guimarães, M. A., Francisco, R. A., Machado, C. E. P., Silva, R. H. A., Iwamura, E. S. M, Evison, M. P., et al. (2016a). Procedural and political aspects of forensic exhumation in Brazil. Human Remains and Violence. Google Scholar
  36. Hackett, C. J. (1981). Microscopical focal destruction (tunnels) in exhumed human bones. Medicine Science and Law, 4, 243–265.Google Scholar
  37. Hagelberg, E., & Clegg, J. B. (1991). Isolation and characterization of DNA from archaeological bone. Proceedings of the Royal Society of London B, 244, 45–50.CrossRefGoogle Scholar
  38. Henke, J., Henke, L., Chatthopadhyay, P., Kayser, M., Dülmer, M., Cleef, S., et al. (2001). Application on Y chromosomal STR Haplotypes to forensic genetics. Croatian Medical Journal, 42(3), 292–297.PubMedGoogle Scholar
  39. Holland, M. M., Fisher, D. L., Mitchell, L. G., Rodriquez, W. C., Canik, J. J., Merril, C. R., et al. (1993). Mitochondrial DNA sequence analysis of human skeletal remains: Identification of remains from the Vietnam War. Journal of Forensic Sciences, 38, 542–553.PubMedCrossRefGoogle Scholar
  40. Huckins, L. M., Boraska, V., Franklin, C. S., Floyd, J. A. B., Southam, L., GCAN, et al. (2014). Using ancestry-informative markers to identify fine structure across 15 populations of European origin. European Journal of Human Genetics, 22, 1190–1200.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Huffine, E., Crews, J., Kennedy, B., Bomverger, K., & Zinbo, A. (2001). Mass identification of persons missing from the break-up of the former Yugoslavia: Structure, function, and role of the international commission on missing persons. Croatian Medical Journal, 42, 271–275.PubMedGoogle Scholar
  42. Iwamura, E. S. M., Oliveira, C. R. M. C., Soares-Vieira, J. A., Nascimento, S. A., & Muñoz, D. R. (2005). A qualitative study of compact bone microstructure and nuclear short tandem repeat obtained from femur of human remains found on the ground and exhumed 3 years after death. American Journal of Forensic Medicine and Pathology, 26(1), 33–44.PubMedCrossRefGoogle Scholar
  43. Iwamura, E. S., Soares-Vieira, J. A., & Muñoz, D. R. (2004). Human identification and analysis of DNA in bones. Review Revista Hospital des Clinicas Faculdade de Medicine do Universidade do São Paulo, 59(6), 383–388.Google Scholar
  44. Jeffreys, A. J., Allen, M. J., Hagelberg, E., & Sonnberg, A. (1992). Identification of the skeletal remains of Josef Mengele by DNA analysis. Forensic Science International, 56(1), 65–76.PubMedCrossRefGoogle Scholar
  45. Jeffreys, A., Wilson, V., & Thein, S. (1985). Individual-specific ‘fingerprints’ of human DNA. Nature, 316(6023), 76–79.PubMedCrossRefGoogle Scholar
  46. Kidd, J. R., Friedlaender, F. R., Speed, W. C., Pakstis, A. J., De La Vega, F. M., & Kidd, K. K. (2011). Analyses of a set of 128 ancestry informative single-nucleotide polymorphisms in a global set of 119 population samples. Investigative Genetics, 2, 1–13.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kidd, K. K., Pakstis, A. J., Speed, W. C., Grigorenko, E. L., Kajuna, S. L., Karoma, N. J., et al. (2006). Forensic Science International, 164(1), 20–32.PubMedCrossRefGoogle Scholar
  48. Lao, O., van Duijn, K., Kersbergen, P., de Knijff, P., & Kayser, M. (2006). Proportioning whole-genome single-nucleotide-polymorphism diversity for the identification of geographic population structure and genetic ancestry. American Journal of Human Genetics, 7, 680–690.CrossRefGoogle Scholar
  49. Lee, H. C., & Ladd, C. (2001). Preservation and collection of biological evidence. Croatian Medical Journal, 42(3), 225–228.PubMedGoogle Scholar
  50. Li, L., Ge, J., Zhang, S., Guo, J., Zhao, S., Li, C., et al. (2012). Maternity exclusion with a very high autosomal STRs kinship index. International Journal of Legal Medicine, 126(4), 645–648.PubMedCrossRefGoogle Scholar
  51. Liu, F., van der Lijn, F., Schumann, C., Zhu, G., Chakravarty, M. M., Hysi, P. G., et al. (2012). A genome-wide association study identifies five loci influencing facial morphology in Europeans. PLoS Genetics, 8(9), e1002932.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Lorente, J. A., Entrala, C., Alvarez, J. C., Arce, B., Heinrichs, B., Lorente, M., et al. (2001). Identification of missing persons: The Spanish “Phoenix” Program. Croatian Medical Journal, 42(3), 267–270.PubMedGoogle Scholar
  53. Lorente, J. A., Entrala, C., Alvarez, J. C., Lorente, M., Arce, B., Heinrich, B., et al. (2002). Social benefits of non-criminal genetic databases: Missing persons and human remains identification. International Journal of Legal Medicine, 116(3), 187–190.PubMedCrossRefGoogle Scholar
  54. M’charek, A. (2013). Beyond fact or fiction: On the materiality of race in practice. Cultural Anthropology, 28(3), 420–442.CrossRefGoogle Scholar
  55. Maroñas, O., Söchtig, J., Ruiz, Y., Phillips, C., Carracedo, A., & Lareu, M. V. (2015). The genetics of skin, hair, and eye color variation and its relevance to forensic pigmentation predictive tests. Forensic Science Reviews, 27(1), 13–40.Google Scholar
  56. Martín, P., García-Hirschfeld, J., García, O., Gusmão, L., García, P., Albarrán, C., et al. (2004). A Spanish population study of 17 Y-chromosome STR loci. Forensic Science International, 139(2-3), 231–235.PubMedCrossRefGoogle Scholar
  57. MDJ. (2014). Rede integrada de bancos de perfis genéticos comitê gestor. Brasilia: Ministério da Justiça.Google Scholar
  58. MITOMAP. (2016). MITOMAP: A human mitochondrial genome database. Retrieved from Accessed 29 Jan 2016.
  59. NIST. (2016a). Short Tandem repeat DNA internet database. Retrieved from Accessed 29 Jan 2016.
  60. NIST. (2016b). Forensic SNP Information. Retrieved from Accessed 29 Jan 2016.
  61. Novembre, J., Johnson, T., Bryc, K., Kutalik, Z., Boyko, A. R., Auton, A., et al. (2008). Genes mirror geography within Europe. Nature, 456(7218), 98–101.PubMedPubMedCentralCrossRefGoogle Scholar
  62. NRC. (1992). DNA technology in forensic science. Washington, DC: National Academy Press, National Research Council.Google Scholar
  63. NRC. (1996). The evaluation of forensic DNA evidence. Washington, DC: National Academy Press/National Research Council.Google Scholar
  64. Parson, W., Strobl, C., Huber, G., Zimmermann, B., Gomes, S. M., Souto, L., et al. (2013). Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM). Forensic Science International. Genetics, 7(5), 543–549.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Phillips, C., Parson, W., Lundsberg, B., Santos, C., Freire-Aradas, A., Torres, M., et al. (2014). Building a forensic ancestry panel from the ground up: The EUROFORGEN Global AIM-SNP set. Forensic Science International. Genetics, 11, 13–25.PubMedCrossRefGoogle Scholar
  66. Ribeiro-dos-Santos, A., Santos, S. E. B., Machado, A. L., Guapindaia, V., & Zago, M. A. (1996). Heterogeneity of mitochondrial DNA haplotypes in pre-Columbian natives of the Amazon Region. American Journal of Physical Anthropology, 101, 29–37.CrossRefGoogle Scholar
  67. Ribeiro-Rodrigues, E. M., Palha, T., De, J., Bittencourt, E. A., Ribeiro-Dos-Santos, A., & Santos, S. (2011). Extensive survey of 12 X-STRs reveals genetic heterogeneity among Brazilian populations. International Journal of Legal Medicine, 125(3), 445–452.PubMedCrossRefGoogle Scholar
  68. Rickards, O., Martínez-Labarga, C., Favaro, M., Frezza, D., & Malleoni, F. (2001). DNA analyzes of the remains of the Prince Branciforte Barresi family. International Journal of Legal Medicine, 114, 141–146.PubMedCrossRefGoogle Scholar
  69. Rosenberg, N. A., Li, L. M., Ward, R., & Pritchard, J. K. (2003). Informativeness of genetic markers for inference of ancestry. American Journal of Human Genetics, 73(6), 1402–1422.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Saiki, R. K., Bugawan, T. L., Horn, G. T., Mullis, K. B., & Erlich, H. A. (1986). Analysis of enzymatically amplified β-Globin and HLA-DQα DNA with allele-specific oligonucleotide probes. Nature, 324, 163–166.PubMedCrossRefGoogle Scholar
  71. Saiki, R., Gelfand, D., Stoffel, S., Scharf, S., Higuchi, R., Horn, G., et al. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239(4839), 487–491.PubMedCrossRefGoogle Scholar
  72. Schneider, P. M. (1997). Basic issues in forensic DNA typing. Forensic Science International, 88(1), 17-22. Science and Justice, 55(5), 323–328.Google Scholar
  73. Seo, S. B., Kin, J. L., Warshauer, D. H., Davis, C. P., Ge, J., & Budowle, B. (2013). Single nucleotide polymorphism typing with massively parallel sequencing for human identification. International Journal of Legal Medicine, 127, 1079–1086.PubMedCrossRefGoogle Scholar
  74. Shriver, M. D., Parra, E. J., Dois, S., Bonilla, C., Norton, H., Jovel, C., et al. (2003). Skin pigmentation, biogeographical ancestry and admixture mapping. Human Genetics, 112(4), 387–399.PubMedGoogle Scholar
  75. Soares-Vieira, J. A., Billerbeck, A. E., Iwamura, E. S., Cardoso, L. A., & Muñoz, D. R. (2000). Parentage testing on blood crusts from firearms projectiles by DNA typing settles and insurance fraud case. Journal of Forensic Sciences, 45(5), 1142–1143.PubMedCrossRefGoogle Scholar
  76. Soares-Vieira, J. A., Billerbeck, A. E. C., Iwamura, E. S. M., Mendonca, B. B., Gusmão, L., & Otto, P. A. (2008). Population and mutation analysis of Y-STR loci in a sample from the city of São Paulo (Brazil). Genetics and Molecular Biology, 31(3), 651–656.CrossRefGoogle Scholar
  77. Soares-Vieira, J. A., Muñoz, D. R., Iwamura, E. S. M., & Billerbeck, A. E. C. (2001). Analysis of DNA in minute volumes of blood from stains and crusts. American Journal of Forensic Medicine and Pathology, 22(3), 308–312.PubMedCrossRefGoogle Scholar
  78. Steinlechner, M., & Parson, W. (2001). Automation and high through put for a DNA database Laboratory development of a laboratory information Management system. Croatian Medical Journal, 42(3), 252–255.PubMedGoogle Scholar
  79. Szibor, R., Krawczak, M., Hering, S., Edelmann, J., Kuhlisch, E., & Krause, D. (2003). Use of X-linked markers for forensic purposes. International Journal of Legal Medicine, 117(2), 67–74.PubMedGoogle Scholar
  80. Trindade-Filho, A., Ferreira, S., & Oliveira, S. F. (2013). Impact of a chromosome X STR Decaplex in deficiency paternity cases. Genetics and Molecular Biology, 36(4), 507–510.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Valverde, P., Healy, E., Jackson, I., Rees, J. L., & Thody, A. J. (1995). Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nature Genetics, 11, 328–330.PubMedCrossRefGoogle Scholar
  82. Van Geystelen, A., Decorte, R., & Larmuseau, M. H. D. (2013). Updating the Y-chromosomal phylogenetic tree for forensic applications based on whole genome SNPs. Forensic Science International. Genetics, 7(6), 573–580.PubMedCrossRefGoogle Scholar
  83. Yang, Y., Xie, B., & Yan, J. (2014). Application of next-generation sequencing technology in forensic science. Genomics, Proteomics and Bioinformatics, 12(5), 190–197.PubMedPubMedCentralCrossRefGoogle Scholar
  84. YHRD. (2016). Y-STR haplotype database. Retrieved from Accessed 29 Jan 2016.
  85. Y-STR. (2016). Y-Chromosome STRs. Retrieved from Accessed 29 Jan 2016.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Edna Sadayo Miazato Iwamura
    • 1
    Email author
  • Marco Aurélio Guimarães
    • 2
  • Martin Paul Evison
    • 3
  1. 1.Department of PathologyEscola Paulista de Medicina—Universidade Federal de São Paulo, Rua BotucatuSão PauloBrazil
  2. 2.Departamento de Patologia—FMRP-USPCEMELRibeirão PretoBrazil
  3. 3.Northumbria University Centre for Forensic Science, Northumbria UniversityNewcastle Upon TyneUK

Personalised recommendations