Skip to main content

DNA Methods to Identify Missing Persons

  • Chapter
  • First Online:

Abstract

Since its discovery in 1985 by Alec Jeffreys, forensic DNA profiling has emerged as an immensely powerful technology. In this chapter, the development of genetic approaches to forensic human identification will be discussed in a variety of contexts, including the analysis of skeletal remains and other trace evidence. The use of autosomal, X and Y chromosome genetic loci and maternally inherited mitochondrial DNA in relationship analysis will be briefly reviewed. More recent advances in the application of single nucleotide polymorphisms (SNPs) and next-generation sequencing (NGS) to human identification, particularly in the development of ancestry informative markers (AIMS) and externally visible characteristics (EVCs), will also be introduced, with related socio-ethical issues. A range of case studies are used to illustrate application of these technologies. Forensic genetics has a range of roles in missing person cases, including homicides and human rights related investigations. It is also important in the investigation of living missing persons, including trafficked children and persons displaced due to conflict and migration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Dr. Daniel Munoz, Dr. Marcos de Almeida, and Dr. Moacir da Silva.

References

  • Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., et al. (1981). Sequence and organization of the human mitochondrial genome. Nature, 290, 457–465.

    Article  PubMed  Google Scholar 

  • Andrews, R. M., Kubacka, I., Chinnery, P. F., Lightowlers, R. N., Turnbull, D. M., & Howell, N. (1999). Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nature Genetics, 23(2), 147.

    Article  PubMed  Google Scholar 

  • Auler-Bittencourt, E., Iwamura, E. S., Lima, M. J., da Silva, I. D., & dos Santos, S. E. (2015). Exploring the applicability of analysing X chromosome STRs in Brazilian admixed population. Science and Justice, 55, 323–328.

    Article  PubMed  Google Scholar 

  • Ban, J. D. (2001). Establishing a large DNA data bank using PowerPlex 1.1 and 2.1 Systems. Review. Croatian Medical Journal, 42(3), 256–259.

    PubMed  Google Scholar 

  • Barbaro, A., Cormaci, P., & Barbaro, A. (2006). X-STR typing for an identification casework. International Congress Series, 1288, 513–515.

    Article  Google Scholar 

  • Bornman, D. M., Hester, M. E., Schuetter, J. M., Kasoji, D. M., Minard-Smith, A., Barden, C. A., et al. (2012). Short-read, high-throughput sequencing technology for STR genotyping. Biotechnology Rapid Dispatches, 2012, 1–6.

    Google Scholar 

  • Bosch, E., Lee, A. C., Calafell, F., Arroyo, E., Henneman, P., de Knijff, P., et al. (2002). High resolution Y chromosome typing: 19 STRs amplified in the three multiplex reactions. Forensic Science International, 125(1), 42–51.

    Article  PubMed  Google Scholar 

  • Butler, J. M. (2005). Forensic DNA typing (2nd ed.). New York, NY: Academic.

    Google Scholar 

  • Butler, J. M. (2012). Advanced topics in forensic DNA typing: Methodology. New York, NY: Academic.

    Google Scholar 

  • Butler, J. M. (2015). US initiatives to strengthen forensic science & international standards in forensic DNA. Forensic Science International. Genetics, 18, 4–20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bydlowski, S. P., Moura Neto, R. S., & Muñoz, D. R. (1999). Testes de paternidade através de DNA—recomendações para laboratórios. Brazil: Sociedade Brasileira de Medicina Legal (SBML).

    Google Scholar 

  • Callaway, E. (2015). Hot climes yield ancient DNA. Nature, 526, 303.

    Article  PubMed  Google Scholar 

  • Cavalli-Sforza, L. L., Menozzi, P., & Piazza, A. (1994). The history and geography of human genes. Princeton, NJ: Princeton University.

    Google Scholar 

  • CDV. (2016). Projeto Caminho de Volta. Retrieved from http://caminhodevolta.fm.usp.br/. Accessed 29 Jan 2016.

  • Chakraborty, R., Stivers, D. N., Su, B., Zhong, T., & Budowle, B. (1999). The utility of short tandem repeat loci beyond human identification: Implications for development of new DNA typing systems. Electrophoresis, 20, 1682–1696.

    Article  PubMed  Google Scholar 

  • Chemale, G., de Freitas, J. M., Badaraco, J. L., Rosa, L. d. S., Martins, J. A., Martins, A. D., et al. (2014). Y-chromosomal STR haplotypes in a sample from Brasília, Federal District, Brazil. Forensic Science International. Genetics, 9, 3–4.

    Article  Google Scholar 

  • ChrX. (2016). ChrX-STR.org 2.0. Retrieved from http://www.chrx-str.org/. Accessed 29 Jan 2016.

  • Claes, P., Liberton, D., Daniels, K., Rosana, K., Quillen, E., Pearson, L., et al. (2014). Modeling 3D facial shape from DNA. PLoS Genetics, 10(3), e1004224.

    Article  PubMed  PubMed Central  Google Scholar 

  • CNP. (2001). Comitê sobre Tecnologia do DNA na ciência forense/Conselho Nacional de Pesquisa. Comissão sobre Ciências da Vida, Conselho de Biologia. Ribeirão Preto, São Paulo, Brazil: Funpec-RP.

    Google Scholar 

  • Coble, M. D., Loreille, O. M., Wadhams, M. J., Edson, S. M., Maynard, K., Meyer, C. E., et al. (2009). Mystery solved: The identification of the two missing romanov children using DNA analysis. PLoS One, 4(3), e4838.

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins, M. J., Nielsen-Marsh, C. M., Hiller, J., Smith, C. I., & Roberts, J. P. (2002). The survival of organic matter in bone: A review. Archaeometry, 44(3), 383–394.

    Article  Google Scholar 

  • Corach, D., Sala, A., Penacino, G., Iannucci, N., Bernardi, P., Doretti, M., et al. (1997). Additional approaches to DNA typing of skeletal remains: The search for “missing” persons killed during the last dictatorship in Argentina. Electrophoresis, 18(9), 1608–1612.

    Article  PubMed  Google Scholar 

  • Daniel, R., Santos, C., Phillips, C., Fondevila, M., van Oorschot, R. A., Carracedo, A., et al. (2015). SNaPshot of next generation sequencing for forensic SNP analysis. Forensic Science International. Genetics, 14, 50–60.

    Article  PubMed  Google Scholar 

  • Davoren, J., Vanek, D., Konjhodzic, R., Crews, J., Huffine, E., & Parsons, T. J. (2007). Highly effective DNA extraction method for nuclear short tandem repeat testing of skeletal remains from mass graves. Croatian Medical Journal, 48(4), 478–485.

    PubMed  PubMed Central  Google Scholar 

  • Eduardoff, M., Santos, C., de la Puente, M., Gross, T. E., Fondevila, M., Strobl, C., et al. (2015). Inter-laboratory evaluation of SNP-based forensic identification by massively parallel sequencing using the Ion PGM™. Forensic Science International. Genetics, 17, 110–121.

    Article  PubMed  Google Scholar 

  • Evett, I. W., & Weir, B. S. (1998). Interpreting DNA evidence: Statistical genetics for forensic scientists. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Evison, M. P., Smillie, D. M., & Chamberlain, A. T. (1997). Extraction of single-copy nuclear DNA from forensic specimens with a variety of postmortem histories. Journal of Forensic Sciences, 42, 1032–1038.

    Article  PubMed  Google Scholar 

  • Funabashi, K. S., Barcelos, D., Visoná, I., Silva, M. S., Sousa, M. L. A. P. O., de Franco, M., et al. (2012). DNA extraction and molecular analysis of non-tumoral liver, spleen, and brain from autopsy samples: The effect of formalin fixation and paraffin embedding. Pathology, Research and Practice, 208(10), 584–591.

    Article  PubMed  Google Scholar 

  • Gill, P., Brenner, C., Brinkmann, B., Budowle, B., Carracedo, A., Jobling, M. A., et al. (2001). DNA Commission of the International Society of Forensic Genetics: Recommendations on forensic analysis using Y-chromosome STRs. Forensic Science International, 124(1), 5–10.

    Article  PubMed  Google Scholar 

  • Gill, P., Ivanov, P. L., Kimpton, C., Piercy, R., Benson, N., & Tully, G. (1994). Identification of the remains of the Romanov family by DNA analysis. Nature Genetics, 6(2), 130–135.

    Article  PubMed  Google Scholar 

  • Gill, P., Whitaker, J., Flaxman, C., Brown, N., & Buckleton, J. (2000). An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA. Forensic Science International, 112(1), 17–40.

    Article  PubMed  Google Scholar 

  • Gillio-Tos, A., De Marco, L., Fiano, V., Garcia-Bragado, F., Dikshit, R., Boffetta, P., et al. (2007). Efficient DNA extraction from 25-year-old paraffin-embedded tissues: Study of 365 samples. Pathology, 39(3), 345–348.

    Article  PubMed  Google Scholar 

  • Godoy, C. D., Kunii, I. S., Funabashi, J. M., Cerutti, M. L. A. P. O., Sousa, D. M., Singawa, D. M., et al. (2011). Mitochondrial DNA in a population of individuals from the City of São Paulo. DNA extraction from head and pubic hair and blood. Forensic Science International: Genetics Supplement Series, 3(1), e149–e150.

    Google Scholar 

  • Guimarães, M. A., Francisco, R. A., Garcia, S. B., Evison, M. P., Pinheiro, M. E., De, C., et al. (2016b). Forensic investigation, truth and trust in the context of transitional justice in Brazil (forthcoming).

    Google Scholar 

  • Guimarães, M. A., Francisco, R. A., Machado, C. E. P., Silva, R. H. A., Iwamura, E. S. M, Evison, M. P., et al. (2016a). Procedural and political aspects of forensic exhumation in Brazil. Human Remains and Violence.

    Google Scholar 

  • Hackett, C. J. (1981). Microscopical focal destruction (tunnels) in exhumed human bones. Medicine Science and Law, 4, 243–265.

    Google Scholar 

  • Hagelberg, E., & Clegg, J. B. (1991). Isolation and characterization of DNA from archaeological bone. Proceedings of the Royal Society of London B, 244, 45–50.

    Article  Google Scholar 

  • Henke, J., Henke, L., Chatthopadhyay, P., Kayser, M., Dülmer, M., Cleef, S., et al. (2001). Application on Y chromosomal STR Haplotypes to forensic genetics. Croatian Medical Journal, 42(3), 292–297.

    PubMed  Google Scholar 

  • Holland, M. M., Fisher, D. L., Mitchell, L. G., Rodriquez, W. C., Canik, J. J., Merril, C. R., et al. (1993). Mitochondrial DNA sequence analysis of human skeletal remains: Identification of remains from the Vietnam War. Journal of Forensic Sciences, 38, 542–553.

    Article  PubMed  Google Scholar 

  • Huckins, L. M., Boraska, V., Franklin, C. S., Floyd, J. A. B., Southam, L., GCAN, et al. (2014). Using ancestry-informative markers to identify fine structure across 15 populations of European origin. European Journal of Human Genetics, 22, 1190–1200.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huffine, E., Crews, J., Kennedy, B., Bomverger, K., & Zinbo, A. (2001). Mass identification of persons missing from the break-up of the former Yugoslavia: Structure, function, and role of the international commission on missing persons. Croatian Medical Journal, 42, 271–275.

    PubMed  Google Scholar 

  • Iwamura, E. S. M., Oliveira, C. R. M. C., Soares-Vieira, J. A., Nascimento, S. A., & Muñoz, D. R. (2005). A qualitative study of compact bone microstructure and nuclear short tandem repeat obtained from femur of human remains found on the ground and exhumed 3 years after death. American Journal of Forensic Medicine and Pathology, 26(1), 33–44.

    Article  PubMed  Google Scholar 

  • Iwamura, E. S., Soares-Vieira, J. A., & Muñoz, D. R. (2004). Human identification and analysis of DNA in bones. Review Revista Hospital des Clinicas Faculdade de Medicine do Universidade do São Paulo, 59(6), 383–388.

    Google Scholar 

  • Jeffreys, A. J., Allen, M. J., Hagelberg, E., & Sonnberg, A. (1992). Identification of the skeletal remains of Josef Mengele by DNA analysis. Forensic Science International, 56(1), 65–76.

    Article  PubMed  Google Scholar 

  • Jeffreys, A., Wilson, V., & Thein, S. (1985). Individual-specific ‘fingerprints’ of human DNA. Nature, 316(6023), 76–79.

    Article  PubMed  Google Scholar 

  • Kidd, J. R., Friedlaender, F. R., Speed, W. C., Pakstis, A. J., De La Vega, F. M., & Kidd, K. K. (2011). Analyses of a set of 128 ancestry informative single-nucleotide polymorphisms in a global set of 119 population samples. Investigative Genetics, 2, 1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kidd, K. K., Pakstis, A. J., Speed, W. C., Grigorenko, E. L., Kajuna, S. L., Karoma, N. J., et al. (2006). Forensic Science International, 164(1), 20–32.

    Article  PubMed  Google Scholar 

  • Lao, O., van Duijn, K., Kersbergen, P., de Knijff, P., & Kayser, M. (2006). Proportioning whole-genome single-nucleotide-polymorphism diversity for the identification of geographic population structure and genetic ancestry. American Journal of Human Genetics, 7, 680–690.

    Article  Google Scholar 

  • Lee, H. C., & Ladd, C. (2001). Preservation and collection of biological evidence. Croatian Medical Journal, 42(3), 225–228.

    PubMed  Google Scholar 

  • Li, L., Ge, J., Zhang, S., Guo, J., Zhao, S., Li, C., et al. (2012). Maternity exclusion with a very high autosomal STRs kinship index. International Journal of Legal Medicine, 126(4), 645–648.

    Article  PubMed  Google Scholar 

  • Liu, F., van der Lijn, F., Schumann, C., Zhu, G., Chakravarty, M. M., Hysi, P. G., et al. (2012). A genome-wide association study identifies five loci influencing facial morphology in Europeans. PLoS Genetics, 8(9), e1002932.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorente, J. A., Entrala, C., Alvarez, J. C., Arce, B., Heinrichs, B., Lorente, M., et al. (2001). Identification of missing persons: The Spanish “Phoenix” Program. Croatian Medical Journal, 42(3), 267–270.

    PubMed  Google Scholar 

  • Lorente, J. A., Entrala, C., Alvarez, J. C., Lorente, M., Arce, B., Heinrich, B., et al. (2002). Social benefits of non-criminal genetic databases: Missing persons and human remains identification. International Journal of Legal Medicine, 116(3), 187–190.

    Article  PubMed  Google Scholar 

  • M’charek, A. (2013). Beyond fact or fiction: On the materiality of race in practice. Cultural Anthropology, 28(3), 420–442.

    Article  Google Scholar 

  • Maroñas, O., Söchtig, J., Ruiz, Y., Phillips, C., Carracedo, A., & Lareu, M. V. (2015). The genetics of skin, hair, and eye color variation and its relevance to forensic pigmentation predictive tests. Forensic Science Reviews, 27(1), 13–40.

    Google Scholar 

  • Martín, P., García-Hirschfeld, J., García, O., Gusmão, L., García, P., Albarrán, C., et al. (2004). A Spanish population study of 17 Y-chromosome STR loci. Forensic Science International, 139(2-3), 231–235.

    Article  PubMed  Google Scholar 

  • MDJ. (2014). Rede integrada de bancos de perfis genéticos comitê gestor. Brasilia: Ministério da Justiça.

    Google Scholar 

  • MITOMAP. (2016). MITOMAP: A human mitochondrial genome database. Retrieved from http://www.mitomap.org/MITOMAP. Accessed 29 Jan 2016.

  • NIST. (2016a). Short Tandem repeat DNA internet database. Retrieved from http://www.cstl.nist.gov/strbase/. Accessed 29 Jan 2016.

  • NIST. (2016b). Forensic SNP Information. Retrieved from http://www.cstl.nist.gov/strbase/SNP.htm. Accessed 29 Jan 2016.

  • Novembre, J., Johnson, T., Bryc, K., Kutalik, Z., Boyko, A. R., Auton, A., et al. (2008). Genes mirror geography within Europe. Nature, 456(7218), 98–101.

    Article  PubMed  PubMed Central  Google Scholar 

  • NRC. (1992). DNA technology in forensic science. Washington, DC: National Academy Press, National Research Council.

    Google Scholar 

  • NRC. (1996). The evaluation of forensic DNA evidence. Washington, DC: National Academy Press/National Research Council.

    Google Scholar 

  • Parson, W., Strobl, C., Huber, G., Zimmermann, B., Gomes, S. M., Souto, L., et al. (2013). Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM). Forensic Science International. Genetics, 7(5), 543–549.

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips, C., Parson, W., Lundsberg, B., Santos, C., Freire-Aradas, A., Torres, M., et al. (2014). Building a forensic ancestry panel from the ground up: The EUROFORGEN Global AIM-SNP set. Forensic Science International. Genetics, 11, 13–25.

    Article  PubMed  Google Scholar 

  • Ribeiro-dos-Santos, A., Santos, S. E. B., Machado, A. L., Guapindaia, V., & Zago, M. A. (1996). Heterogeneity of mitochondrial DNA haplotypes in pre-Columbian natives of the Amazon Region. American Journal of Physical Anthropology, 101, 29–37.

    Article  Google Scholar 

  • Ribeiro-Rodrigues, E. M., Palha, T., De, J., Bittencourt, E. A., Ribeiro-Dos-Santos, A., & Santos, S. (2011). Extensive survey of 12 X-STRs reveals genetic heterogeneity among Brazilian populations. International Journal of Legal Medicine, 125(3), 445–452.

    Article  PubMed  Google Scholar 

  • Rickards, O., Martínez-Labarga, C., Favaro, M., Frezza, D., & Malleoni, F. (2001). DNA analyzes of the remains of the Prince Branciforte Barresi family. International Journal of Legal Medicine, 114, 141–146.

    Article  PubMed  Google Scholar 

  • Rosenberg, N. A., Li, L. M., Ward, R., & Pritchard, J. K. (2003). Informativeness of genetic markers for inference of ancestry. American Journal of Human Genetics, 73(6), 1402–1422.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saiki, R. K., Bugawan, T. L., Horn, G. T., Mullis, K. B., & Erlich, H. A. (1986). Analysis of enzymatically amplified β-Globin and HLA-DQα DNA with allele-specific oligonucleotide probes. Nature, 324, 163–166.

    Article  PubMed  Google Scholar 

  • Saiki, R., Gelfand, D., Stoffel, S., Scharf, S., Higuchi, R., Horn, G., et al. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239(4839), 487–491.

    Article  PubMed  Google Scholar 

  • Schneider, P. M. (1997). Basic issues in forensic DNA typing. Forensic Science International, 88(1), 17-22. Science and Justice, 55(5), 323–328.

    Google Scholar 

  • Seo, S. B., Kin, J. L., Warshauer, D. H., Davis, C. P., Ge, J., & Budowle, B. (2013). Single nucleotide polymorphism typing with massively parallel sequencing for human identification. International Journal of Legal Medicine, 127, 1079–1086.

    Article  PubMed  Google Scholar 

  • Shriver, M. D., Parra, E. J., Dois, S., Bonilla, C., Norton, H., Jovel, C., et al. (2003). Skin pigmentation, biogeographical ancestry and admixture mapping. Human Genetics, 112(4), 387–399.

    PubMed  Google Scholar 

  • Soares-Vieira, J. A., Billerbeck, A. E., Iwamura, E. S., Cardoso, L. A., & Muñoz, D. R. (2000). Parentage testing on blood crusts from firearms projectiles by DNA typing settles and insurance fraud case. Journal of Forensic Sciences, 45(5), 1142–1143.

    Article  PubMed  Google Scholar 

  • Soares-Vieira, J. A., Billerbeck, A. E. C., Iwamura, E. S. M., Mendonca, B. B., Gusmão, L., & Otto, P. A. (2008). Population and mutation analysis of Y-STR loci in a sample from the city of São Paulo (Brazil). Genetics and Molecular Biology, 31(3), 651–656.

    Article  Google Scholar 

  • Soares-Vieira, J. A., Muñoz, D. R., Iwamura, E. S. M., & Billerbeck, A. E. C. (2001). Analysis of DNA in minute volumes of blood from stains and crusts. American Journal of Forensic Medicine and Pathology, 22(3), 308–312.

    Article  PubMed  Google Scholar 

  • Steinlechner, M., & Parson, W. (2001). Automation and high through put for a DNA database Laboratory development of a laboratory information Management system. Croatian Medical Journal, 42(3), 252–255.

    PubMed  Google Scholar 

  • Szibor, R., Krawczak, M., Hering, S., Edelmann, J., Kuhlisch, E., & Krause, D. (2003). Use of X-linked markers for forensic purposes. International Journal of Legal Medicine, 117(2), 67–74.

    PubMed  Google Scholar 

  • Trindade-Filho, A., Ferreira, S., & Oliveira, S. F. (2013). Impact of a chromosome X STR Decaplex in deficiency paternity cases. Genetics and Molecular Biology, 36(4), 507–510.

    Article  PubMed  PubMed Central  Google Scholar 

  • Valverde, P., Healy, E., Jackson, I., Rees, J. L., & Thody, A. J. (1995). Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nature Genetics, 11, 328–330.

    Article  PubMed  Google Scholar 

  • Van Geystelen, A., Decorte, R., & Larmuseau, M. H. D. (2013). Updating the Y-chromosomal phylogenetic tree for forensic applications based on whole genome SNPs. Forensic Science International. Genetics, 7(6), 573–580.

    Article  PubMed  Google Scholar 

  • Yang, Y., Xie, B., & Yan, J. (2014). Application of next-generation sequencing technology in forensic science. Genomics, Proteomics and Bioinformatics, 12(5), 190–197.

    Article  PubMed  PubMed Central  Google Scholar 

  • YHRD. (2016). Y-STR haplotype database. Retrieved from https://yhrd.org/. Accessed 29 Jan 2016.

  • Y-STR. (2016). Y-Chromosome STRs. Retrieved from http://www.cstl.nist.gov/strbase/y_strs.htm. Accessed 29 Jan 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edna Sadayo Miazato Iwamura Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Iwamura, E.S.M., Guimarães, M.A., Evison, M.P. (2016). DNA Methods to Identify Missing Persons. In: Morewitz, S., Sturdy Colls, C. (eds) Handbook of Missing Persons. Springer, Cham. https://doi.org/10.1007/978-3-319-40199-7_22

Download citation

Publish with us

Policies and ethics