Skip to main content

Recent Advances in Non-perfect Secret Sharing Schemes

  • Conference paper
  • First Online:
Pursuit of the Universal (CiE 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9709))

Included in the following conference series:

Abstract

A secret sharing scheme is non-perfect if some subsets of players that cannot recover the secret have partial information about it. This paper is a survey of the recent advances in non-perfect secret sharing schemes. We provide an overview of the techniques for constructing efficient non-perfect secret sharing schemes, bounds on the efficiency of these schemes, and results on the characterization of the ideal ones. We put special emphasis on the connections between non-perfect secret sharing schemes and polymatroids, matroids, information theory, and coding theory.

O. Farràs — Supported by the Spanish Government through a Juan de la Cierva grant and TIN2014-57364-C2-1-R, by the European Union through H2020-ICT-2014-1-644024, and by the Government of Catalonia through Grant 2014 SGR 537.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Benaloh, J.C., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, Heidelberg (1990)

    Google Scholar 

  3. Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS Conference Proceedings, vol. 48, pp. 313–317 (1979)

    Google Scholar 

  4. Blakley, G.R., Meadows, C.: Security of ramp schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 242–268. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  5. Brickell, E.F., Davenport, D.M.: On the classification of ideal secret sharing schemes. J. Cryptology 4, 123–134 (1991)

    MATH  Google Scholar 

  6. Cascudo, I., Cramer, R., Xing, C.: Bounds on the threshold gap in secret sharing and its applications. IEEE Trans. Inf. Theory 59, 5600–5612 (2013)

    Article  MathSciNet  Google Scholar 

  7. Chen, H., Cramer, R., Goldwasser, S., de Haan, R., Vaikuntanathan, V.: Secure computation from random error correcting codes. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 291–310. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Chen, H., Cramer, R., de Haan, R., Pueyo, I.C.: Strongly multiplicative ramp schemes from high degree rational points on curves. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 451–470. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Chen, Q., Yeung, R.W.: Two-partition-symmetrical entropy function regions. In: ITW, pp. 1–5 (2013)

    Google Scholar 

  10. Cramer, R., Damgård, I.B., Döttling, N., Fehr, S., Spini, G.: Linear secret sharing schemes from error correcting codes and universal hash functions. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 313–336. Springer, Heidelberg (2015)

    Google Scholar 

  11. Cramer, R., Damgård, I.B., de Haan, R.: Atomic secure multi-party multiplication with low communication. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 329–346. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    Google Scholar 

  13. Csirmaz, L.: The size of a share must be large. J. Cryptology 10, 223–231 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Druk, E., Ishai, Y.: Linear-time encodable codes meeting the Gilbert-Varshamov bound and their cryptographic applications. In: ITCS, pp. 169–182 (2014)

    Google Scholar 

  15. Farràs, O., Hansen, T., Kaced, T., Padró, C.: Optimal non-perfect uniform secret sharing schemes. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 217–234. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  16. Farràs, O., Hansen, T., Kaced, T., Padró, C.: On the information ratio of non-perfect uniform secret sharing schemes. Cryptology ePrint Archive 2014/124 (2014)

    Google Scholar 

  17. Farràs, O., Martín, S., Padró, C.: A note on ideal non-perfect secret sharing schemes. Cryptology ePrint Archive 2016/348 (2016)

    Google Scholar 

  18. Farràs, O., Padró, C.: Extending Brickell-Davenport theorem to non-perfect secret sharing schemes. Des. Codes Cryptogr. 74(2), 495–510 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Franklin, M., Yung, M.: Communication complexity of secure computation. In: STOC, pp. 699–710 (1992)

    Google Scholar 

  20. Fujishige, S.: Polymatroidal dependence structure of a set of random variables. Inf. Control 39, 55–72 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fujishige, S.: Entropy functions and polymatroids–combinatorial structures in information theory. Electron. Comm. Japan 61, 14–18 (1978)

    MathSciNet  Google Scholar 

  22. Geil, O., Martin, S., Martínez-Peńas, U., Matsumoto, R., Ruano, D.: On asymptotically good ramp secret sharing schemes (2015). arXiv.org/abs/1502.05507

  23. Geil, O., Martin, S., Matsumoto, R., Ruano, D., Luo, Y.: Relative generalized hamming weights of one-point algebraic geometric codes. IEEE Trans. Inform. Theory 60, 5938–5949 (2014)

    Article  MathSciNet  Google Scholar 

  24. Ishai, Y., Kushilevitz, E., Strulovich, O.: Lossy chains and fractional secret sharing. In: STACS 2013. LIPICS, vol. 20, pp. 160–171 (2013)

    Google Scholar 

  25. Kurosawa, K., Okada, K., Sakano, K., Ogata, W., Tsujii, S.: Nonperfect secret sharing schemes and matroids. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 126–141. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  26. Martí-Farré, J., Padró, C.: On secret sharing schemes, matroids polymatroids. J. Math. Cryptol. 4, 95–120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Okada, K., Kurosawa, K.: Lower bound on the size of shares of nonperfect secret sharing schemes. In: Safavi-Naini, R., Pieprzyk, J.P. (eds.) ASIACRYPT 1994. LNCS, vol. 917, pp. 33–41. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  28. Ogata, W., Kurosawa, K., Tsujii, S.: Nonperfect secret sharing schemes. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 56–66. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  29. Padró, C.: Lecture Notes in Secret Sharing. Cryptology ePrint Archive 2012/674

    Google Scholar 

  30. Paillier, A.: On ideal non-perfect secret sharing schemes. In: Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols 1997. LNCS, vol. 1361, pp. 207–216. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  31. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yoshida, M., Fujiwara, T.: Secure construction for nonlinear function threshold ramp secret sharing. In: IEEE International Symposium on Information Theory, ISIT 2007, pp. 1041–1045 (2007)

    Google Scholar 

  33. Yoshida, M., Fujiwara, T., Fossorier, M.: Optimum general threshold secret sharing. In: Smith, A. (ed.) ICITS 2012. LNCS, vol. 7412, pp. 187–204. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oriol Farràs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Farràs, O. (2016). Recent Advances in Non-perfect Secret Sharing Schemes. In: Beckmann, A., Bienvenu, L., Jonoska, N. (eds) Pursuit of the Universal. CiE 2016. Lecture Notes in Computer Science(), vol 9709. Springer, Cham. https://doi.org/10.1007/978-3-319-40189-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40189-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40188-1

  • Online ISBN: 978-3-319-40189-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics