Squeezing Feasibility

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9709)


This note explores an often overlooked question about the characterization of the notion model of computation which was originally identified by Cobham [5]. A simple formulation is as follows: what primitive operations are allowable in the definition of a model such that its time and space complexity measures provide accurate gauges of practical computational difficulty? After exploring the significance of this question in the context of subsequent work on machine models and simulations, an adaptation of Kreisel’s squeezing argument [17] for Church’s Thesis involving Gandy machines [11] is sketched which potentially bears on this question.


  1. 1.
    Arora, S., Barak, B.: Computational Complexity: A Modern Approach. University Press, Cambridge (2009)CrossRefMATHGoogle Scholar
  2. 2.
    Bertoni, A., Mauri, G., Sabadini, N.: Simulations among classes of random access machines and equivalence among numbers succinctly represented. In: Annals of Discrete Mathematics. North-Holland Mathematics Studies, vol. 109, pp. 65–89. Elsevier (1985)Google Scholar
  3. 3.
    Buss, R.: Bounded Arithmetic. Bibliopolis, Naples (1986)MATHGoogle Scholar
  4. 4.
    Clote, P.: Boolean Functions and Computation Models. Springer, Heidelberg (2002)CrossRefMATHGoogle Scholar
  5. 5.
    Cobham, A.: The intrinsic computational difficulty of functions. In: Proceedings of the Third International Congress for Logic, Methodology and Philosophy of Science, Amsterdam, pp. 24–30. North-Holland (1965)Google Scholar
  6. 6.
    Cook, S.: An overview of computational complexity. Commun. ACM 26, 401–408 (1983)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cook, S., Aanderaa, S.: On the minimum computation time of functions. Trans. Am. Math. Soc. 142, 291–314 (1969)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cook, S., Reckhow, R.: Time bounded random access machines. J. Comput. Syst. Sci. 7(4), 354–375 (1973)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dean, W.: Computational complexity theory. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Fall 2015 Ed. (2015)Google Scholar
  10. 10.
    Fürer, M.: Faster integer multiplication. SIAM J. Comput. 39(3), 979–1005 (2009)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gandy, R.: Church’s thesis and principles for mechanisms. In: Barwise, H.K.J., Kunen, K. (eds.) The Kleene Symposium, vol. 101, pp. 123–148. North Holland, Amsterdam (1980)CrossRefGoogle Scholar
  12. 12.
    Hartmanis, J., Simon, J.: On the power of multiplication in random access machines. In: 1974 IEEE Conference Record of 15th Annual Symposium on Switching and Automata Theory, pp. 13–23. IEEE (1974)Google Scholar
  13. 13.
    Hartmanis, J., Stearns, R.: On the computational complexity of algorithms. Trans. Am. Math. Soc. 117(5), 285–306 (1965)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1999)CrossRefMATHGoogle Scholar
  15. 15.
    Knuth, D.: The Art of Computer Programming, vol. I–III. Addison Wesley, Boston (1973)Google Scholar
  16. 16.
    Kolmogorov, A., Uspensky, V.: To the definition of algorithms. Uspekhi Mat. Nauk 13(4), 3–28 (1958)Google Scholar
  17. 17.
    Kreisel, G.: Informal rigour and completeness proofs. In: Problems in the Philosophy of Mathematics, pp. 138–186 (1967)Google Scholar
  18. 18.
    Kreisel, G.: Which number theoretic problems can be solved in recursive progressions on \(\Pi ^1_1\)-paths through \(\cal {O}\)? J. Symbolic Logic 37(2), 311–334 (1972)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kreisel, G.: Church’s thesis and the ideal of informal rigour. Notre Dame J. Formal Logic 28(4), 499–519 (1987)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Rose, H.: Subrecursion: Functions and Hierarchies. Clarendon Press, Oxford (1984)MATHGoogle Scholar
  21. 21.
    Savitch, W., Stimson, M.: Time bounded random access machines with parallel processing. J. ACM 26(1), 103–118 (1979)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Schönhage, A.: Storage modification machines. SIAM J. Comput. 9(3), 490–508 (1980)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7(3–4), 281–292 (1971)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Sieg, W.: On computability. In: Irvine, A. (ed.) Philosophy of Mathematics, Handbook of the Philosophy of Science, vol. 4, pp. 549–630. North Holland, Amsterdam (2009)Google Scholar
  25. 25.
    Turing, A.: On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 42(2), 230–265 (1936)MathSciNetMATHGoogle Scholar
  26. 26.
    van Emde Boas, P.: Space measures for storage modification machines. Inf. Process. Lett. 30(2), 103–110 (1989)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    van Emde Boas, P.: Machine models and simulations. In: Van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science (vol. A): Algorithms and Complexity. MIT Press, Cambridge (1990)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of WarwickCoventryUK

Personalised recommendations