Abstract
The history of computability theory and the history of analysis are surprisingly intertwined since the beginning of the twentieth century. For one, Émil Borel discussed his ideas on computable real number functions in his introduction to measure theory. On the other hand, Alan Turing had computable real numbers in mind when he introduced his now famous machine model. Here we want to focus on a particular aspect of computability and analysis, namely on computability properties of theorems from analysis. This is a topic that emerged already in early work of Turing, Specker and other pioneers of computable analysis and eventually leads us to the very recent project of classifying the computational content of theorems in the Weihrauch lattice.
V. Brattka—Supported by the National Research Foundation of South Africa. This article uses some historical insights that were established in [2].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
See [19] for a definition of computably compact.
References
Aberth, O.: The failure in computable analysis of a classical existence theorem for differential equations. Proc. Am. Math. Soc. 30, 151–156 (1971)
Avigad, J., Brattka, V.: Computability and analysis: the legacy of Alan Turing. In: Downey, R. (ed.) Turing’s Legacy: Developments from Turing’s Ideas in Logic, LNL, vol. 42, pp. 1–47. Cambridge University Press, Cambridge, UK (2014)
Baigger, G.: Die Nichtkonstruktivität des Brouwerschen Fixpunktsatzes. Arch. Math. Logic 25, 183–188 (1985)
Beeson, M.J.: Foundations of Constructive Mathematics. A Series of Modern Surveys in Mathematics. Springer, Berlin (1985)
Borel, É.: Le calcul des intégral définies. Journal de Mathematiques pures et appliquées 8(2), 159–210 (1912)
Borel, É.: La théorie de la mesure et al théorie de l’integration. In: Leçons sur la théorie des fonctions, pp. 214–256. Gauthier-Villars, Paris, 4 edn. (1950)
Brattka, V.: Computability of Banach space principles. Informatik Berichte 286, FernUniversität Hagen, Fachbereich Informatik, Hagen, June 2001
Brattka, V.: Effective Borel measurability and reducibility of functions. Math. Logic Q. 51(1), 19–44 (2005)
Brattka, V.: Computable versions of the uniform boundedness theorem. In: Chatzidakis, Z., et al. (eds.) Logic Colloquium 2002. LNL, vol. 27, pp. 130–151. ASL, Urbana (2006)
Brattka, V.: Borel complexity and computability of the Hahn-Banach Theorem. Arch. Math. Logic 46(7–8), 547–564 (2008)
Brattka, V.: A computable version of Banach’s inverse mapping theorem. Ann. Pure Appl. Logic 157, 85–96 (2009)
Brattka, V., de Brecht, M., Pauly, A.: Closed choice and a uniform low basis theorem. Ann. Pure Appl. Logic 163, 986–1008 (2012)
Brattka, V., Gherardi, G.: Effective choice and boundedness principles in computable analysis. Bull. Symbolic Logic 17(1), 73–117 (2011)
Brattka, V., Gherardi, G.: Weihrauch degrees, omniscience principles and weak computability. J. Symbolic Logic 76(1), 143–176 (2011)
Brattka, V., Gherardi, G., Hölzl, R.: Probabilistic computability and choice. Inf. Comput. 242, 249–286 (2015)
Brattka, V., Gherardi, G., Marcone, A.: The Bolzano-Weierstrass theorem is the jump of weak Kőnig’s lemma. Ann. Pure Appl. Logic 163, 623–655 (2012)
Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. In: Cooper, S.B., et al. (eds.) New Computational Paradigms: Changing Conceptions of What is Computable, pp. 425–491. Springer, New York (2008)
Brattka, V., Le Roux, S., Pauly, A.: Connected choice and the Brouwer fixed point theorem. arXiv 1206.4809. http://arxiv.org/abs/1206.4809
Brattka, V., Presser, G.: Computability on subsets of metric spaces. Theor. Comput. Sci. 305, 43–76 (2003)
Brattka, V., Yoshikawa, A.: Towards computability of elliptic boundary value problems in variational formulation. J. Complex. 22(6), 858–880 (2006)
Gherardi, G., Marcone, A.: How incomputable is the separable Hahn-Banach theorem? Notre Dame Journal of Formal Logic 50(4), 393–425 (2009)
Grzegorczyk, A.: Computable functionals. Fundamenta Mathematicae 42, 168–202 (1955)
Hertling, P.: An effective Riemann mapping theorem. Theor. Comput. Sci. 219, 225–265 (1999)
Hoyrup, M., Rojas, C., Weihrauch, K.: Computability of the Radon-Nikodym derivative. Computability 1(1), 3–13 (2012)
Jockusch, C.G., Soare, R.I.: \(\Pi ^{0}_{1}\) classes and degrees of theories. Trans. Am. Math. Soc. 173, 33–56 (1972)
Kleene, S.C.: Recursive functions and intuitionistic mathematics. In: Proceedings of the International Congress of Mathematicians, Cambridge, 1950, vol. 1, pp. 679–685. AMS, Providence (1952)
Ko, K.I.: Complexity Theory of Real Functions. Progress in Theoretical Computer Science. Birkhäuser, Boston (1991)
Kreisel, G.: On the interpretation of non-finitist proofs, II: interpretation of number theory, applications. J. Symbolic Logic 17, 43–58 (1952)
Lacombe, D.: Remarques sur les opérateurs récursifs et sur les fonctions récursives d’une variable réelle. C. R. Acad. Paris 241, 1250–1252, théorie des fonctions, November 1955
Lacombe, D.: Les ensembles récursivement ouverts ou fermés, et leurs applications à l’Analyse récursive. C. R. Acad. Paris 245, 1040–1043, logique (1957)
Le Roux, S., Ziegler, M.: Singular coverings and non-uniform notions of closed set computability. Math. Logic Q. 54(5), 545–560 (2008)
Metakides, G., Nerode, A.: The introduction of non-recursive methods into mathematics. In: Troelstra, A., van Dalen, D. (eds.) The L.E.J. Brouwer Centenary Symposium, pp. 319–335. North-Holland, Amsterdam (1982)
Metakides, G., Nerode, A., Shore, R.A.: Recursive limits on the Hahn-Banach theorem. In: Rosenblatt, M. (ed.) Errett Bishop: Reflections on Him and His Research. AMS, Providence (1985). Contemp. Math. vol. 39, pp. 85–91
Orevkov, V.P.: A constructive mapping of the square onto itself displacing every constructive point (Russian). Doklady Akademii Nauk 152, 55–58 (1963). Translated in: Soviet Math. - Dokl. vol. 4, pp. 1253–1256 (1963)
Pauly, A.: How incomputable is finding Nash equilibria? J. Univers. Comput. Sci. 16(18), 2686–2710 (2010)
Pauly, A.: On the (semi)lattices induced by continuous reducibilities. Math. Logic Q. 56(5), 488–502 (2010)
Pour-El, M.B., Richards, J.I.: A computable ordinary differential equation which possesses no computable solution. Ann. Math. Logic 17, 61–90 (1979)
Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer, Berlin (1989)
Rice, H.G.: Recursive real numbers. Proc. Am. Math. Soc. 5, 784–791 (1954)
Simpson, S.G.: Subsystems of Second Order Arithmetic, 2nd edn. Cambridge University Press, Poughkeepsie (2009)
Specker, E.: Nicht konstruktiv beweisbare Sätze der Analysis. J. Symbolic Logic 14(3), 145–158 (1949)
Specker, E.: Der Satz vom Maximum in der rekursiven Analysis. In: Heyting, A. (ed.) Constructivity in Mathematics, pp. 254–265. North-Holland, Amsterdam (1959)
Turing, A.M.: On computable numbers, with an application to the “Entscheidungsproblem”. Proc. London Math. Soc. 42(2), 230–265 (1937)
Turing, A.M.: On computable numbers, with an application to the “Entscheidungsproblem”. Correction Proc. London Math. Soc. 43(2), 544–546 (1938)
Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)
Zaslavskiĭ, I.D.: Disproof of some theorems of classical analysis in constructive analysis (Russian). Usp. Mat. Nauk 10(4), 209–210 (1955)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Brattka, V. (2016). Computability and Analysis, a Historical Approach. In: Beckmann, A., Bienvenu, L., Jonoska, N. (eds) Pursuit of the Universal. CiE 2016. Lecture Notes in Computer Science(), vol 9709. Springer, Cham. https://doi.org/10.1007/978-3-319-40189-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-40189-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40188-1
Online ISBN: 978-3-319-40189-8
eBook Packages: Computer ScienceComputer Science (R0)