Skip to main content

Comparative Genomics on Artificial Life

  • Conference paper
  • First Online:
Book cover Pursuit of the Universal (CiE 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9709))

Included in the following conference series:

Abstract

Molecular evolutionary methods and tools are difficult to validate as we have almost no direct access to ancient molecules. Inference methods may be tested with simulated data, producing full scenarios they can be compared with. But often simulations design is concomitant with the design of a particular method, developed by a same team, based on the same assumptions, when both should be blind to each other. In silico experimental evolution consists in evolving digital organisms with the aim of testing or discovering complex evolutionary processes. Models were not designed with a particular inference method in mind, only with basic biological principles. As such they provide a unique opportunity to blind test the behavior of inference methods. We give a proof of this concept on a comparative genomics problem: inferring the number of inversions separating two genomes. We use Aevol, an in silico experimental evolution platform, to produce benchmarks, and show that most combinatorial or statistical estimators of the number of inversions fail on this dataset while they were behaving perfectly on ad-hoc simulations. We argue that biological data is probably closer to the difficult situation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexeev, N., Aidagulov, R., Alekseyev, M.A.: A computational method for the rate estimation of evolutionary transpositions. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015, Part I. LNCS, vol. 9043, pp. 471–480. Springer, Heidelberg (2015)

    Google Scholar 

  2. Alexeev, N., Alekseyev, M.A.: Estimation of the true evolutionary distance under the fragile breakage model. Arxiv (2015). http://arxiv.org/abs/1510.08002

  3. Batut, B., Parsons, D.P., Fischer, S., Beslon, G., Knibbe, C.: In silico experimental evolution: a tool to test evolutionary scenarios. BMC Bioinformatics 14(S15), S11 (2013)

    Article  Google Scholar 

  4. Beiko, R.G., Charlebois, R.L.: A simulation test bed for hypotheses of genome evolution. Bioinformatics 23(7), 825–831 (2007)

    Article  Google Scholar 

  5. Berestycki, N., Durrett, R.: A phase transition in the random transposition random walk. Probab. Theory Relat. Fields 136, 203–233 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berthelot, C., Muffato, M., Abecassis, J., Crollius, H.R.: The 3d organization of chromatin explains evolutionary fragile genomic regions. Cell Rep. 10(11), 1913–1924 (2015)

    Article  Google Scholar 

  7. Biller, P., Guéguen, L., Tannier, E.: Moments of genome evolution by double cut-and-join. BMC Bioinform. 16(Suppl 14), S7 (2015)

    Article  Google Scholar 

  8. Biller, P., Knibbe, C., Guéguen, L., Tannier, E.: Breaking good: accounting for the diversity of fragile regions for estimating rearrangement distances. Genome Biol. Evol. (2016, in press)

    Google Scholar 

  9. Caprara, A., Lancia, G.: Experimental and statistical analysis of sorting by reversals. In: Sankoff, D., Nadeau, J.H. (eds.) Comparative Genomics, pp. 171–183. Springer, Amsterdam (2000)

    Chapter  Google Scholar 

  10. Dalquen, D.A., Anisimova, M., Gonnet, G.H., Dessimoz, C.: ALF-a simulation framework for genome evolution. Mol. Biol. Evol. 29(4), 1115–1123 (2012)

    Article  Google Scholar 

  11. Duchemin, W., Daubin, V., Tannier, E.: Reconstruction of an ancestral yersinia pestis genome and comparison with an ancient sequence. BMC Genom. 16(Suppl 10), S9 (2015)

    Article  Google Scholar 

  12. Eriksen, N., Hultman, A.: Estimating the expected reversal distance after a fixed number of reversals. Adv. Appl. Math. 32, 439–453 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of Genome Rearrangements. MIT Press, London (2009)

    Book  MATH  Google Scholar 

  14. Fletcher, W., Yang, Z.: Indelible: a flexible simulator of biological sequence evolution. Mol. Biol. Evol. 26(8), 1879–1888 (2009)

    Article  Google Scholar 

  15. Hall, B.G.: Simulating DNA coding sequence evolution with EvolveAGene 3. Mol. Biol. Evol. 25(4), 688–695 (2008)

    Article  Google Scholar 

  16. Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm for genomic distance problem). In: Proceedings of 36th Annual Symposium on Foundations of Computer Science (1995)

    Google Scholar 

  17. Hillis, D.M., Bull, J.J., White, M.E., Badgett, M.R., Molineux, I.J.: Experimental phylogenetics: generation of a known phylogeny. Science 255(5044), 589–592 (1992)

    Article  Google Scholar 

  18. Hindré, T., Knibbe, C., Beslon, G., Schneider, D.: New insights into bacterial adaptation through in vivo and in silico experimental evolution. Nat. Rev. Microbiol. 10, 352–365 (2012)

    Google Scholar 

  19. Knibbe, C., Coulon, A., Mazet, O., Fayard, J.-M., Beslon, G.: A long-term evolutionary pressure on the amount of noncoding DNA. Mol. Biol. Evol. 24(10), 2344–2353 (2007)

    Article  Google Scholar 

  20. Larget, B., Simon, D.L., Kadane, J.B.: On a Bayesian approach to phylogenetic inference from animal mitochondrial genome arrangements (with discussion). J. Roy. Stat. Soc. B 64, 681–693 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lemaitre, C., Zaghloul, L., Sagot, M.-F., Gautier, C., Arneodo, A., Tannier, E., Audit, B.: Analysis of fine-scale mammalian evolutionary breakpoints provides new insight into their relation to genome organisation. BMC Genom. 10, 335 (2009)

    Article  Google Scholar 

  22. Lin, Y., Moret, M.E.: Estimating true evolutionary distances under the DCJ model. Bioinformatics 24(13), i114–i122 (2008)

    Article  Google Scholar 

  23. Mallo, D., De Oliveira Martins, L., Posada, D.: Simphy: phylogenomic simulation of gene, locus, and species trees. Syst Biol. 65, 334–344 (2016)

    Article  Google Scholar 

  24. Steel, M., Penny, D.: Parsimony, likelihood, and the role of models in molecular phylogenetics. Mol. Biol. Evol. 17(6), 839–850 (2000)

    Article  Google Scholar 

  25. Swenson, K.M., Marron, M., Earnest-DeYoung, J.V., Moret, B.M.E.: Approximating the true evolutionary distance between two genomes. J. Exp. Algorithmics 12, 3.5 (2008)

    Article  MathSciNet  Google Scholar 

  26. Szőllösi, G.J., Boussau, B., Abby, S.S., Tannier, E., Daubin, V.: Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations. Proc. Natl. Acad. Sci. U. S. A. 109(43), 17513–17518 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

This work was funded by FAPESP grant 2013/25084-2 to PB, ANR-10-BINF-01-01 Ancestrome to ET and ICT FP7 European programme EVOEVO to CK and GB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Tannier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Biller, P., Knibbe, C., Beslon, G., Tannier, E. (2016). Comparative Genomics on Artificial Life. In: Beckmann, A., Bienvenu, L., Jonoska, N. (eds) Pursuit of the Universal. CiE 2016. Lecture Notes in Computer Science(), vol 9709. Springer, Cham. https://doi.org/10.1007/978-3-319-40189-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40189-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40188-1

  • Online ISBN: 978-3-319-40189-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics