Skip to main content

Towards Computational Complexity Theory on Advanced Function Spaces in Analysis

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9709))

Abstract

Pour-El and Richards [PER89], Weihrauch [Weih00], and others have extended Recursive Analysis from real numbers and continuous functions to rather general topological spaces. This has enabled and spurred a series of rigorous investigations on the computability of partial differential equations in appropriate advanced spaces of functions. In order to quantitatively refine such qualitative results with respect to computational efficiency we devise, explore, and compare natural encodings (representations) of compact metric spaces: both as infinite binary sequences (TTE) and more generally as families of Boolean functions via oracle access as introduced by Kawamura and Cook ([KaCo10], Sect. 3.4). Our guide is relativization: Permitting arbitrary oracles on continuous universes reduces computability to topology and computational complexity to metric entropy in the sense of Kolmogorov. This yields a criterion and generic construction of optimal representations in particular of (subsets of) \(L^p\) and Sobolev spaces that solutions of partial differential equations naturally live in.

Supported in part by JSPS Kakenhi projects 24106002 and 26700001, by EU FP7 IRSES project 294962, by DFG Zi 1009/4-1 and by IRTG 1529. We thank Daniel Graça and Elvira Mayordomo for inviting this extended abstract as opportunity to report on our progress since its CCA 2015 short version.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aehlig, K., Cook, S., Nguyen, P.: Relativizing small complexity classes and their theories. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 374–388. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Braverman, M., Cook, S.A.: Computing over the reals: foundations for scientific computing. Not. AMS 53(3), 318–329 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Buss, J.F.: Relativized alternation and space-bounded computation. J. Comput. Syst. Sci. 36, 351–378 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. de Brecht, M., Yamamoto, A.: Topological properties of concept spaces. Inf. Comput. 208(4), 327–340 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chaudhuri, S., Sankaranarayanan, S., Vardi, M.Y.: Regular real analysis. In: Proceedings of 28th Annual IEEE Symposium on Logic in Computer Science (LiCS2013), pp. 509–518 (2013)

    Google Scholar 

  6. Férée, H., Ziegler, M.: On the Computational Complexity of Positive Linear Functionals on C[0;1]. In: Kotsireas, I.S., Rump, S.M., Yap, C.K. (eds.) MACIS 2015. LNCS, vol. 9582, pp. 489–504. Springer, Heidelberg (2016). doi:10.1007/978-3-319-32859-1_42

    Google Scholar 

  7. Férée, H., Hainry, E., Hoyrup, M., Péchoux, R.: Characterizing polynomial time complexity of stream programs using interpretations. Theor. Comput. Sci. 595, 41–54 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gregoriades, V., Kihara, T.: Recursion and effectivity in the decomposability conjecture. (2014, submitted). arXiv:1410.1052

  9. Hertling, P.: A BanachMazur computable but not Markov computable function on the computable real numbers. Ann. Pure Appl. Log. 132, 227–246 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kapron, B.M., Cook, S.A.: A new characterization of type-2 feasibility. SIAM J. Comput. 25(1), 117–132 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kawamura, A., Cook, S.A.: Complexity theory for operators in analysis. In: Proceedings of 42nd Annual ACM Symposium on Theory of Computing (STOC 2010); Full Version in ACM Transactions in Computation Theory, vol. 4 no. 2, article 5 (2012)

    Google Scholar 

  12. Kawamura, A., Ota, H.: Small complexity classes for computable analysis. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 432–444. Springer, Heidelberg (2014)

    Google Scholar 

  13. Kawamura, A., Pauly, A.: Function spaces for second-order polynomial time. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds.) CiE 2014. LNCS, vol. 8493, pp. 245–254. Springer, Heidelberg (2014)

    Google Scholar 

  14. Kawamura, A., Müller, N., Rösnick, C., Ziegler, M.: Computational benefit of smoothness: parameterized bit-complexity of numerical operators on analytic functions and Gevrey’s hierarchy. J. Complex. 31(5), 689–714 (2015)

    Article  MATH  Google Scholar 

  15. Ko, K.-I.: Computational Complexity of Real Functions. Birkhäuser, Boston (1991)

    Book  MATH  Google Scholar 

  16. Kohlenbach, U.: Applied Proof Theory. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  17. Kawamura, A., Ota, H., Rösnick, C., Ziegler, M.: Computational complexity of smooth differential equations. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 578–589. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Kolmogorov, A.N., Tikhomirov, V.M.: \(\cal {E}\)-Entropy and \({\cal {E}}\)-Capacity of Sets in Functional Spaces. Uspekhi Mat. Nauk 14(2), 3–86 (1959). also pp. 86–170 in Selected Works of A.N. Kolmogorov vol. III (Shiryayev, A.N. Ed.), Nauka (1993) and Springer (1987)

    MathSciNet  MATH  Google Scholar 

  19. Kawamura, A., Steinberg, F., Ziegler, M.: Complexity of Laplace’s and Poisson’s Equation. Bulletin of Symbolic Logic 20(2), 231 (2014). Full version in Mathem. Structures in Computer Science (2016)

    Google Scholar 

  20. Pauly, A., Ziegler, M.: Relative computability and uniform continuity of relations. J. Log. Anal. 5, 1–39 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pour-El, M.B., Richards, I.: Computability in Analysis and Physics. Springer, Heidelberg (1989)

    Book  MATH  Google Scholar 

  22. Schröder, M.: Topological spaces allowing type-2 complexity theory. In: Workshop on Computability and Complexity in Analysis, Informatik-Berichte 190, FernUniversität Hagen (1995)

    Google Scholar 

  23. Schröder, M.: Spaces allowing type-2 complexity theory revisited. Math. Logic Q. 50, 443–459 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schröder, M.: Admissible representations in computable analysis. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 471–480. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Sun, S.M., Zhong, N., Ziegler, M.: On the Computability of the Navier-Stokes Equation. In: Beckmann, A., Mitrana, V., Soskova, M. (eds.) Evolving Computability. LNCS, vol. 9136, pp. 334–342. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  26. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  27. Weihrauch, K.: Computational complexity on computable metric spaces. Math. Log. Q. 49(1), 3–21 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Weihrauch, K., Zhong, N.: Is wave propagation computable or can wave computers beat the turing machine? Proc. London Math. Soc. 85(2), 312–332 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wilson, C.B.: A measure of relativized space which is faithful with respect to depth. J. Comput. Syst. Sci. 36, 303–312 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ziegler, M.: Real hypercomputation and continuity. Theory Comput. Syst. 41, 177–206 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ziegler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kawamura, A., Steinberg, F., Ziegler, M. (2016). Towards Computational Complexity Theory on Advanced Function Spaces in Analysis. In: Beckmann, A., Bienvenu, L., Jonoska, N. (eds) Pursuit of the Universal. CiE 2016. Lecture Notes in Computer Science(), vol 9709. Springer, Cham. https://doi.org/10.1007/978-3-319-40189-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40189-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40188-1

  • Online ISBN: 978-3-319-40189-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics