Advertisement

K-Translate - Interactive Multi-system Machine Translation

  • Matīss Rikters
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 615)

Abstract

The tool described in this article has been designed to help machine translation (MT) researchers to combine and evaluate various MT engine outputs through a web-based graphical user interface using syntactic analysis and language modelling. The tool supports user provided translations as well as translations from popular online MT system application program interfaces (APIs). The selection of the best translation hypothesis is done by calculating the perplexity for each hypothesis. The evaluation panel provides sentence tree graphs and chunk statistics. The result is a syntax-based multi-system translation tool that shows an improvement of BLEU scores compared to the best individual baseline MT. We also present a demo server with data for combining English - Latvian translations.

Keywords

Machine translation Hybrid machine translation Syntactic parsing Chunking Natural language processing Computational linguistics Data services 

References

  1. 1.
    Ahsan, A., Kolachina, P.: Coupling statistical machine translation with rule-based transfer and generation. In: AMTA-The Ninth Conference of the Association for Machine Translation in the Americas. Denver, Colorado (2010)Google Scholar
  2. 2.
    Barrault, L.: MANY: open source machine translation system combination. Prague Bull. Math. Linguist. 93, 147–155 (2010)CrossRefGoogle Scholar
  3. 3.
    Mellebeek, B., Owczarzak, K., Van Genabith, J., Way, A.: Multi-engine machine translation by recursive sentence decomposition. In: Proceedings of the 7th Conference of the Association for Machine Translation in the Americas, pp. 110–118 (2006)Google Scholar
  4. 4.
    Freitag, M., Peter, J., Peitz, S., Feng, M., Ney, H.: Local system voting feature for machine translation system combination. In: EMNLP 2015, Tenth Workshop on Statistical Machine Translation (WMT 2015), Lisbon, Portugal, pp. 467–476 (2015)Google Scholar
  5. 5.
    Petrov, S., Barrett, L., Thibaux, R., Klein, D.: Learning accurate, compact, and interpretable tree annotation. In: Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics (2006)Google Scholar
  6. 6.
    Heafield, K.: KenLM: faster and smaller language model queries. In: Proceedings of the Sixth Workshop on Statistical Machine Translation. Association for Computational Linguistics (2011)Google Scholar
  7. 7.
    Gamon, M., Aue, A., Smets, M.: Sentence-level MT evaluation without reference translations: beyond language modeling. In: Proceedings of EAMT (2005)Google Scholar
  8. 8.
    Callison-Burch, C., Flournoy, R.S.: A program for automatically selecting the best output from multiple machine translation engines. In: Proceedings of the Machine Translation Summit VIII (2001)Google Scholar
  9. 9.
    Akiba, Y., Watanabe, T., Sumita, E.: Using language and translation models to select the best among outputs from multiple MT systems. In: Proceedings of the 19th International Conference on Computational Linguistics, vol. 1. Association for Computational Linguistics (2002)Google Scholar
  10. 10.
    Rikters, M.: Multi-system machine translation using online APIs for English-Latvian. In: ACL-IJCNLP 2015, p. 6 (2015)Google Scholar
  11. 11.
    Steinberger, R., Pouliquen, B., Widiger, A., Ignat, C., Erjavec, T., Tufis, D., Varga, D.: The JRC-Acquis: a multilingual aligned parallel corpus with 20 + languages. arXiv preprint cs/0609058 (2006)
  12. 12.
    Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics (2002)Google Scholar
  13. 13.
    Doddington, G.: Automatic evaluation of machine translation quality using n-gram co-occurrence statistics. In: Proceedings of the Second International Conference on Human Language Technology Research. Morgan Kaufmann Publishers Inc. (2002)Google Scholar
  14. 14.
    Klejch, O., Avramidis, E., Burchardt, A., Popel, M.: MT-compareval: graphical evaluation interface for machine translation development. Prague Bull. Math. Linguist. 104(1), 63–74 (2015)CrossRefGoogle Scholar
  15. 15.
    Madnani, N.: iBLEU: interactively debugging and scoring statistical machine translation systems. In: 2011 Fifth IEEE International Conference on Semantic Computing (ICSC). IEEE (2011)Google Scholar
  16. 16.
    Zhongjun, H.E.: Baidu translate: research and products. In: ACL-IJCNLP 2015, p. 61 (2015)Google Scholar
  17. 17.
    Oravecz, C., Sass, B., Tihanyi, L.: 4.3 Evaluation campaign report (2012)Google Scholar
  18. 18.
    Sundermeyer, M., Schlüter, R., Ney, H.: rwthlm-the RWTH aachen university neural network language modeling toolkit. In: INTERSPEECH (2014)Google Scholar
  19. 19.
    Kim, Y., Jernite, Y., Sontag, D. Rush, A.M.: Character-aware neural language models. arXiv preprint arXiv:1508.06615 (2015)
  20. 20.
    Zariņa, I., Ņikiforovs, P., Skadiņš, R.: Word alignment based parallel corpora evaluation and cleaning using machine learning techniques. In: EAMT 2015 (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of LatviaRigaLatvia

Personalised recommendations