Skip to main content

Current Technical Perspective and Application of Aquatic Weeds in Phytoremediation

  • Chapter
  • First Online:

Abstract

Anthropogenic pollution inputs are a cause of great concern. Continuous inputs of polluting material such as heavy metals, pesticides, fertilizer and other organic, inorganic material are burdening the environment, specially the aquatic bodies. Water bodies when overloaded with polluting material causes high level of stress and becomes depleted with dissolved oxygen, life sustaining factors. These stressful conditions can be resisted by certain aquatic weeds. Some of them even thrive in such conditions and accumulate large amount of heavy metals and other xenobiotic compounds. These stress sustaining and thriving species could prove to be useful for wastewater treatment strategies collectively referred as phytoremediation and bioremediation strategies. The current chapter mainly deals with discussion regarding these technologies in aquatic environments utilizing such aquatic plants. Plants taken in consideration for discussion include water hyacinth and duckweed. It has been reported that these plants are efficient enough to reduce water pollution of textile industries, as they are good bioaccumulator and accumulate contaminants into their tissues. Water hyacinth has high capacity of absorbing various toxic organic substances from the contaminated water. It has been reported that duckweed is very efficient for reducing the biochemical oxygen demand, percentage of heavy metals, chemical oxygen demand, orthophosphate, nitrate, and ammonia during its exposure to wastewater. The current review chapter focuses enough on these specific capabilities of plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alluri HK, Ronda SR, Settalluri VS, Bondili JS, Suryanarayana V, Venkateshwar P (2007) Biosorption: an eco-friendly alternative for heavy metal removal. Afr J Biotechnol 6(25):2924–2931

    Article  CAS  Google Scholar 

  2. Central Pollution Control Board (2008) Status of water quality in India 2007. CPCB, New Delhi, India

    Google Scholar 

  3. Rai LC, Gaur JP, Kumar HD (1981) Phycology and heavy metal pollution. Biol Rev Camb Philos Soc 56:99–151

    Article  CAS  Google Scholar 

  4. Lokeshwari H, Chandrappa GT (2007) Effects of heavy metal contamination from anthropogenic sources on Dasarahalli tank, India. Lakes and Reservoirs. Res Manage 12:121–128

    CAS  Google Scholar 

  5. Chang JS, Yoon IH, Kim KW (2009) Heavy metal and arsenic accumulating fern species as potential ecological indicators in As-contaminated abandoned mines. Ecol Indic 9:1275–1279

    Article  CAS  Google Scholar 

  6. Yadav SK, Juwarkar AA, Kumar GP, Thawale PR, Singh SK, Chakrabarti T (2009) Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: impact of dairy sludge and biofertilizer. Bioresour Technol 100:4616–4622

    Article  CAS  PubMed  Google Scholar 

  7. Akpor OB, Muchie M (2010) Remediation of heavy metals in drinking water and wastewater treatment systems: processes and applications. Int J Phys Sci 5(12):1807–1817

    CAS  Google Scholar 

  8. Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3(1):1–18

    Article  Google Scholar 

  9. Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotech Adv 18:23–34

    Article  CAS  Google Scholar 

  10. Susarla S, Medina VF, McCutcheon SC (2002) Pytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 1818:647–658

    Article  Google Scholar 

  11. Xia H, Wu L, Tao Q (2003) A review on phytoremediation of organic contaminants. Chi J Appl Ecol 14:457–460

    CAS  Google Scholar 

  12. Hamoda MD, AL-Haddad AA (1987) Investigation of petroleum refinery effluent treatment in an aerobic fixed. Water Air Soil Pollut 199:57–65

    Google Scholar 

  13. Wuyep PA, Chuma AG, Awodi S, Nok AJ (2007) Biosorption of Cr, Mn, Fe, Ni, Cu and Pb metals from petroleum refinery effluent by calcium alginate immobilized mycelia of Polyporus squamosus. Sci Res Essay 2(7):217–221

    Google Scholar 

  14. World Health Organization (WHO) (1984) Guideline for drinking water quality recommendations, (vol. 1). World Health Organization, Geneva

    Google Scholar 

  15. Department of Environment, Ministry of Natural Resources and Environment, Government of Malaysia (DoE) (1974) Environmental Quality Act 1974–Act 127, Environment Quality (Sewage and Industrial Effluents) Regulations 1979-12/79

    Google Scholar 

  16. Cunningham SD, William RB, Jianwei WH (1995) Phytoremediation of contaminated soils. Tibtech 13:393–397

    Article  CAS  Google Scholar 

  17. Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110(3):715–719

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycl 11:41–49

    Article  Google Scholar 

  19. Brooks RR (1994) Plants and chemical elements: biochemistry, uptake, tolerance and toxicity. In: Gargo ME (ed) VCH Verlagsgesellsschaft, Weinheim, pp 88–105

    Google Scholar 

  20. Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  CAS  PubMed  Google Scholar 

  21. Salt DE, Pickering IJ, Prince RC, Gleba D, Dushenkov S, Smith RD, Raskin I (1997) Metal accumulation by aquacultured seedlings of Indian Mustard. Environ Sci Technol 31(6):1636–1644

    Article  CAS  Google Scholar 

  22. Rulkens WH, Tichy R, Grotenhuis JTC (1998) Remediation of polluted soil and sediment: perspectives and failures. Water Sci Technol 37:27–35

    Article  CAS  Google Scholar 

  23. Girdhar M, Sharma NR, Rehman H, Kumar A, Mohan A (2014) Comparative assessment for hyperaccumulatory and phytoremediation capability of three wild weeds. Biotechnology 4(6):579–589

    Google Scholar 

  24. Black H (1995) Absorbing possibilities: phytoremediation. Environ Health Perspect 103(12):1106–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chaudhry TM, Hayes WJ, Khan AG, Khoo CS (1998) Phytoremediation—focusing on accumulator plants that remediate metal contaminated soils. Australasian J Ecotox 4:37–51

    CAS  Google Scholar 

  26. Dushenkov V, Kumar PBAN, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    Article  CAS  PubMed  Google Scholar 

  27. Flathman PE, Lanza GR (1998) Phytoremediation: current views on an emerging green technology. J Soil Contam 7(4):415–432

    Article  Google Scholar 

  28. Zhu YL, Zayed AM, Qian JH, Souza M, Terry N (1999) Phytoaccumulation of trace elements by wetland plants, II. Water hyacinth. J Environ Qual 28:339–344

    Article  CAS  Google Scholar 

  29. Arora A, Saxena S, Sharma DK (2006) Tolerance and phytoaccumulation of chromium by three Azolla species. World J Microb Biot 22:97–100

    Article  CAS  Google Scholar 

  30. Umali LJ, Duncan JR, Burgess JE (2006) Performance of dead Azolla filiculoides biomass in biosorption of Au from wastewater. Biotechnol Lett 28:45–49

    Article  CAS  PubMed  Google Scholar 

  31. Meagher RB, Heaton AC (2005) Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic. J Ind Microb Biot 32(11–12):502–513

    Article  CAS  Google Scholar 

  32. Kapoor A, Viraraghavan T, Cullimore DR (1999) Removal of heavy metals using the fungus Aspergillus niger. Bioresour Technol 70:95–104

    Article  CAS  Google Scholar 

  33. Kapoor A, Viraraghavan T (1998) Application of immobilized Aspergillus niger biomass in the removal of heavy metals from an industrial wastewater. J Environ Sci Health 33:1507–1514

    Article  Google Scholar 

  34. LeDuc DL, Terry N (2005) Phytoremediation of toxic trace elements in soil and water. J Ind Microb Biot 32(11–12):514–520

    Article  CAS  Google Scholar 

  35. Volesky B (1987) Biosorbent for metal recovery. Trends Biotechnol 5:96

    Article  CAS  Google Scholar 

  36. Macek T, Francova K, Kochankova L, Lovecka P, Ryslava E, Rezek J et al (2004) Phytoremediation: biological cleaning of a polluted environment. Rev Environ Health 19(1):63–82

    Article  CAS  PubMed  Google Scholar 

  37. Lang ML, Zhang YX, Chai TY (2004) Advances in the research of genetic engineering of heavy metal resistance and accumulation in plants. Chin J Biotech 20(2):157–164

    CAS  Google Scholar 

  38. Prasad MNV, Freitash H (2000) Removal of toxic metals from the aqueous solution by the leaf, stem and root phytomass of Quercus ilex L. (Holly Oak). Environ Pollut 110(2):277–283

    Article  CAS  PubMed  Google Scholar 

  39. Upadhyay AR, Tripathi BD (2007) Principle and process of biofiltration of Cd, Cr, Co, Ni & Pb from tropical opencast coalmine effluent. Water Air Soil Pollut 180(1–4):213–223

    Article  CAS  Google Scholar 

  40. Xia H, Ma X (2005) Phytoremediation of ethion by water hyacinth (Eichhornia crassipes) from water. Biores Technol 97:1050–1054

    Article  CAS  Google Scholar 

  41. Lu Q (2009) Evaluation of aquatic plants for phytoremediation of eutrophic stormwaters. PhD Thesis, University of Florida, Florida

    Google Scholar 

  42. Roongtanakiat N, Tangruangkiat S, Meesat R (2007) Utilization of vetiver grass (Vetiveria zizanioides) for removal of heavy metals from industrial wastewaters. Sci Asia 33:397–403

    Article  CAS  Google Scholar 

  43. Stefani GD, Tocchetto D, Salvato M, Borin M (2011) Performance of a floating treatment wetland for in-stream water amelioration in NE Italy. Hydrobiologia 674:157–167

    Article  CAS  Google Scholar 

  44. Singh OV, Labana S, Pandey G, Budhiraja R, Jain RK (2003) Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 61:405–412

    Article  CAS  PubMed  Google Scholar 

  45. Xia H, Ma X (2006) Phytoremediation of ethion by water hyacinth (Eichhornia crassipes) from water. Biores Technol 97:1050–1054

    Article  CAS  Google Scholar 

  46. Jamuna S, Noorjahan CM (2009) Treatment of sewage waste water using water hyacinth—Eichhornia sp and its reuse for fish culture. Toxicol Int 16(2):103–106

    Google Scholar 

  47. Mkandawire M, Dudel EG (2007) Are lemna spp. effective phytoremediation agents. Bioreme Biodiv Bioavail 1(1):56–71

    Google Scholar 

  48. Mashauri DA, Mulungu DMM, Abdulhussein BS (2000) Constructed wetland at the university of Dar es salaam. Water Res 34(4):1135–1144

    Article  CAS  Google Scholar 

  49. Baskar G, Deeptha VT, Rahman AA (2009) Treatment of wastewater from kitchen in an institution hostel mess using constructed wetland. Int J Recent Trends Eng 1(6):54–58

    Google Scholar 

  50. Sinha RK, Herat S, Tandon PK (2004) 14 phytoremediation: role of plants in contaminated site management. In: Book of environmental bioremediation technologies, Springer, Berlin, pp 315–330

    Google Scholar 

  51. U. S. Department of Energy (1994) Mechanisms of plant uptake, translocation, and storage of toxic elements. Plume Focus Area, December. Summary Report of a workshop on phytoremediation research needs

    Google Scholar 

  52. Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 1–31

    Google Scholar 

  53. Salido AL, Hasty KL, Lim JM, Butcher DJ (2003) Phytoremediation of arsenic and lead in contaminated soil using Chinese Brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Int J Phytoremediat 5(2):89–103

    Article  CAS  Google Scholar 

  54. Erdei L, Mezosi G, Mecs I, Vass I, Foglein F, Bulik L (2005) Phytoremediation as a program for decontamination of heavy-metal polluted environment. In: Proceedings of the eighth Hungarian congress on plant physiology and the sixth Hungarian conference on photosynthesis

    Google Scholar 

  55. Abbasi SA (1987) Aquatic plant based water treatment systems in Asia. In: Reddy KR (ed) Aquatic plants for water treatment and resource recovery. Magnolia Publishers, Orlando

    Google Scholar 

  56. Kay SH, Haller WT, Garrad LA (1984) Effect of heavy metals on water hyacinths [Eichhornia crassipes (Mart.) Solms. Aquat Toxicol 5:117–128

    Article  CAS  Google Scholar 

  57. Zhu YL, Zayed AM, Quian JH, De Souza M, Terry N (1999) Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. J Environ Qual 28:339–344

    Article  CAS  Google Scholar 

  58. Dinges R (1976) Water hyacinth culture for wastewater treatment. Texas Department of Health Resources, Austin

    Google Scholar 

  59. Wolverton BC, McDonald RC (1979) The water hyacinth: from prolific pest to potential provider. Ambio 8:1–12

    Google Scholar 

  60. Aquatics (2005) PSS 123 Garden Flowers. http://pss.uvm.edu/pss123/aquatics.html

  61. Wilson JR, Holst N, Rees M (2005) Determinants and patterns of population growth in water hyacinth. Aquat Bot 81:51–67

    Article  Google Scholar 

  62. Bolenz S, Omran H, Gierschner K (1990) Treatments of water hyacinth tissue to obtain useful products. Biol Waste 33(4):263–274

    Article  Google Scholar 

  63. APIRIS (2005) Invasive non indigenous plants in Florida. http://plants.ifas.ufl.edu/hyacin2.html

  64. Dhote S, Dixit S (2009) Water quality improvement through macrophytes—a review. Environ Monit Assess 152:149–153

    Article  CAS  PubMed  Google Scholar 

  65. Lissy AMPN, Madhu BG (2010) Removal of heavy metals from waste water using water hyacinth. In: Proceedings of the international conference on advances in civil engineering, pp 42–47

    Google Scholar 

  66. Dar SH, Kumawat DM, Singh N, Wani KA (2011) Sewage treatment potential of water hyacinth (Eichhornia crassipes). Res J Environ Sci 5(4):377–385

    Article  CAS  Google Scholar 

  67. Patil JH, Raj MLA, Bhargav S, Sowmya SR (2011) Anaerobic co-digestion of water hyacinth with primary sludge. Res J Chem Sci 1(3):72–77

    CAS  Google Scholar 

  68. Villamagna AM (2009) Ecological effects of water hyacinth (Eichhornia crassipes) on lake Chapala, Mexico, PhD thesis. Fisheries and Wildlife Sciences, Virginia Polytechnic Institute and State University, Blacksburg

    Google Scholar 

  69. O’Brien WJ (1981) Use of aquatic macrophytes for wastewater treatment. Amer Soc Civ Engineers (ASCE) Env Eng Div 107:681–698

    Google Scholar 

  70. Hasan MR, Chakrabarti R (2009) Use of algae and aquatic macrophytes as feed in small-scale aquaculture: a review. FAO Fisheries and Aquaculture Technical Paper, p 531

    Google Scholar 

  71. Center TD, Hill MP, Cordo H, Julien MH (2002) Water hyacinth. In: Van Driesche R et al (eds) Biological control of invasive plants in the Eastern United States. USDA Forest Service Publication, Morgantown, FHTET-2002-04, 41-64

    Google Scholar 

  72. Center TD, Van TK, Dray FA Jr, Franks SJ, Rebelo MT, Pratt PD, Rayamajhi MB (2005) Herbivory alters competitive interactions between two invasive aquatic plants. Biol Control 33:173–185

    Article  Google Scholar 

  73. USEPA (1988) Design Manual—constructed wetlands and aquatic systems for municipal wastewater treatment, United States Environmental Protection Agency, Report no. EPA/625/1-88/022, Office of Research and Development, Cincinnati, p 83

    Google Scholar 

  74. Debusk TA, Dierberg FE (1989) Effects of nutrient availability on water hyacinth standing crop and detritus deposition. Hydrobiologia 174:151–159

    Article  CAS  Google Scholar 

  75. Moorhead KK, Reddy FR, Graetz DA (1988) Water hyacinth productivity and detritus accumulation. Hydrobiologia 157:179–185

    Article  CAS  Google Scholar 

  76. Reddy KR, Agami M, Tucker JC (1989) Influence of nitrogen supply rates on growth and nitrogen storage by water hyacinth (Eichhornia crassipes) plants. Aquat Bot 36:33–43

    Article  CAS  Google Scholar 

  77. Sato M, Kondo S (1981) Biomass production of water hyacinth and its ability to remove inorganic minerals from water. I. Effect of the concentration of culture solution on the rates of plant growth and nutrient uptake. Jap J Ecol 31:257–267

    Google Scholar 

  78. Reddy KR (1981) Diel variations in physio-chemical parameters of water in selected aquatic systems. Hydrobiologia 85(3):201–207

    Article  Google Scholar 

  79. Beath JM (2000) Consider phytoremediation for waste site cleanup. Chem Eng Progr 96(7):61–69

    CAS  Google Scholar 

  80. Wolverton BC, McDonald RC (1979) Water hyacinth (Eichhornia crassipes) productivity and harvesting studies. Econ Bot 33:1–10

    Article  Google Scholar 

  81. Sooknah RD, Wilkie AC (2004) Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecol Eng 22:27–42

    Article  Google Scholar 

  82. Ayyasamy PM, Rajakumar S, Sathishkumar M, Swaminathan K, Shanthi K, Lakshmanaperumalsamy P, Lee S (2009) Nitrate removal from synthetic medium and groundwater with aquatic macrophytes. Desalination 242:286–296

    Article  CAS  Google Scholar 

  83. Richards JH (1982) Development potentials of axillary birds of water hyacinth (Eichhornia crassipes). Amer J Bot 69:615–622

    Article  Google Scholar 

  84. Valipour A, Raman VK, Motallebi P (2010) Application of shallow pond system using water hyacinth for domestic wastewater treatment in the presence of high total dissolved solids (TDS) and heavy metal salts. Environ Eng Manage J 9(6):853–860

    CAS  Google Scholar 

  85. Brix H, Shierup HH (1989) The use of aquatic macrophytes in water pollution control. Ambio 18:100–107

    Google Scholar 

  86. Mandi L (1994) Marrakesh wastewater purification experiment using vascular aquatic plants Eichhornia crassipes and Lemna gibba. Water Sci Technol 29:283–287

    CAS  Google Scholar 

  87. Chigbo FE, Smith RW, Shore FL (1982) Uptake of arsenic, cadmium, lead and mercury from polluted waters by the water hyacinth. Environ Poll A27:31–36

    Article  Google Scholar 

  88. John CK (1985) Treatment of agro-industrial wastes using water hyacinth. Water Sci Technol 17(4–5):781–790

    CAS  Google Scholar 

  89. Mane AV, Saratale GD, Karadge BA, Samant JS (2011) Studies on the effects of salinity on growth, polyphenol content and photosynthetic response in Vetiveria zizanioides (L.) Nash. Emir J Food Agric 23(1):59–70

    Google Scholar 

  90. O’Keefe DH, Hardy JK, Rao RA (1984) Cadmium uptake by water hyacinth: effect of solution factors. Environ Pollut Series A 34:133–147

    Article  Google Scholar 

  91. Mishra VK, Tripathi BD (2008) Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Biores Technol 99:7091–7097

    Article  CAS  Google Scholar 

  92. Haider SZ, Malik KMA, Rahman MN, Wadsten T (1984) Proceedings of international conference on water hyacinth. UNEP, Nairobi, p 351

    Google Scholar 

  93. Liao SW, Chang WL (2004) Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. J Aquat Plant Manage 42:60–68

    Google Scholar 

  94. Wang Q, Cui Y, Dong Y (2002) Phytoremediation of polluted waters: potentials and prospects of wetland plants. Acta Biotechnol 22:199–208

    Article  CAS  Google Scholar 

  95. Zayed A, Gowthaman S, Terry N (1998) Phytoaccumulation of traces elements by wetland plants: I. Duckweed J Environ Qual 27:715–721

    Article  CAS  Google Scholar 

  96. Soltan ME, Rashed MN (2003) Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations. Adv Environ Res 7:82–91

    Article  Google Scholar 

  97. Amin SM (2006) Environmental safety of petroleum refinery operation: Malaysian case studies. Graduate thesis, Faculty of Engineering, University of Malaya

    Google Scholar 

  98. Beddri AM (2006) Removal of heavy metals in refinery effluents using water hyacinth. Graduate Thesis, Civil Eng Department, University of Malaya

    Google Scholar 

  99. Eapen S, D’ Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotech Adv 23(2):97–114

    Article  CAS  Google Scholar 

  100. Borges AKP, Tauk-Tornisielo SM, Domingos RN, Angelis DF (2008) Performance of the constructed wetland system for the treatment of water from the Corumbatai river. Braz Arch Biol Technol 51(6):1279–1286

    Article  CAS  Google Scholar 

  101. Shah RA, Kumawat DM, Singh N, Wani KA (2010) Water hyacinth (Eichhornia crassipes) as a remediation tool for dye-effluent pollution. Int J Sci Nature 1(2):172–178

    Google Scholar 

  102. Mangas-Ramirez E, Elias-Gutierrez M (2004) Effect of mechanical removal of water hyacinth (Eichhornia crassipes) on the water quality and biological communities in a Mexican reservoir. J Aquat Ecosys Health Manage 7:161–168

    Article  Google Scholar 

  103. Perna C, Burrows D (2005) Improved dissolved oxygen status following removal of exotic weed mats in important fish habitat lagoons of the tropical Burdekin river floodplain, Australia. Marine Poll Bull 51:138–148

    Article  CAS  Google Scholar 

  104. Trivedy RK, Pattanshetty SM (2002) Treatment of dairy waste by using water hyacinth. Water Sci Technol 45(12):329–334

    CAS  PubMed  Google Scholar 

  105. Sooknah R (2000) A review of the mechanisms of pollutant removal in water hyacinth systems. Sci Tech Res J 6:49–57

    Google Scholar 

  106. Lehn H, Bopp M (1987) Prediction of heavy-metal concentrations in mature plants by chemical analysis of seedlings. Plant Soil 101:9–14

    Article  CAS  Google Scholar 

  107. EL-Leboudi AE, Abd-Elmoniem EM, Soliman EM, El-Sayed OF (2008) Removal of some heavy metals from treated waste water by aquatic plants. In: 3rd international conference on water resources and arid environments and the 1st Arab Water Forum, Riyadh, Saudi Arabia

    Google Scholar 

  108. Gamage NS, Yapa PAJ (2001) Use of water hyacinth [Eichhornia crassipes (Mart) solms] in treatment systems for textile mill effluents—a case study. J Natn Sci Foundation Sri Lanka 29(1–2):15–28

    Google Scholar 

  109. Kulatillake N, Yapa PAJ (1984) A study on the use of water hyacinth in rubber effluent treatment systems. In: Proceedings of the Malaysian Chemical Congress, Kuala Lumpur

    Google Scholar 

  110. Snow AM, Ghaly AE (2008) A comparative study of the purification of aquaculture wastewater using water hyacinth, water lettuce and parrot’s feather. Am J Appl Sci 5(4):440–453

    Article  CAS  Google Scholar 

  111. Koottatep T, Polprasert C (1997) Role of plant uptake on nitrogen removal in constructed wetlands located in the tropics. Water Sci Technol 36:1–8

    Article  CAS  Google Scholar 

  112. Jing SR, Lin YF, Lee DY, Wang TW (2001) Nutrient removal from polluted river water by using constructed wetlands. Bioresour Technol 76:131–135

    Article  CAS  PubMed  Google Scholar 

  113. Elias JM, Salati FE, Salati E (2001) Performance of constructed wetland system for public water supply. Water Sci Technol 44:579–584

    CAS  PubMed  Google Scholar 

  114. Schulz C, Gelbrecht J, Rennert B (2004) Constructed wetlands with free water surface for treatment of aquaculture effluents. J Appl Ichthyol 20:64–70

    Article  Google Scholar 

  115. Cornwell DA, Zoltek J, Patrinely CD (1977) Nutrient removal by water hyacinths. J Water Poll Control Fed 49:57–65

    CAS  Google Scholar 

  116. Ingersoll T, Baker LA (1998) Nitrate removal in wetland microcosms. Water Res 32:677–684

    Article  CAS  Google Scholar 

  117. Sheffield CW (1967) Water hyacinth for nutrient removal. Hyacinth Cont J 6:27–30

    Article  Google Scholar 

  118. Reddy KR, Campbell KL, Graetz DA, Portier KM (1982) Use of biological filters for treating agricultural drainage effluents. J Environ Qual 11:591–595

    Article  CAS  Google Scholar 

  119. Ornes WH, Sutton DL (1975) Removal of phosphorus from static sewage effluent by water hyacinth. Hyacinth Cont J 13:56–61

    CAS  Google Scholar 

  120. Knipling EB, West SH, Haller WT (1970) Growth characteristics, yield potential and nutritive content of water hyacinths. Hyacinth Control J 8:34–35

    Google Scholar 

  121. Rogers HH, Davis DE (1972) Nutrient removal by water hyacinth. Weed Sci 20:423–428

    Google Scholar 

  122. Reddy KR, Tucker JC (1983) Productivity and nutrient uptake of water hyacinth, Eichhornia crassipes I. Effect of nitrogen source. Econ Bot 37:237–247

    Article  CAS  Google Scholar 

  123. Chaiprapat S, Cheng JJ, Classen JJ, Liehr SK (2005) Role of internal nutrient storage in duckweed growth for swine wastewater treatment. Trans ASAE 48(6):2247–2258

    Article  CAS  Google Scholar 

  124. Jain SK, Gujral GS, Jha NK, Vasudevan P (1988) Heavy metal uptake by pleurotus Sajor-Caju from metal enriched Duckweed substrate. Biol Waste 24:275–282

    Article  CAS  Google Scholar 

  125. Devi PU, Akagi K, Ostapenko V, Tanaka Y, Sugahara T (1996) Withaferin A: a new radiosensitizer from Indian medicinal plant Withania somnifera. Int J Radiat Biol 69(2):193–197

    Article  CAS  PubMed  Google Scholar 

  126. Brain AR, Johnson DJ, Richards SM, Hanson ML, Sanderson H, Lam MW, Young C, Mabury SA, Sibley PK, Solomon KR (2004) Microcosm evaluation of the effects of an eight pharmaceutical mixture to the aquatic macrophytes Lemna gibba and Myriophyllum sibiricum. Aquat Toxicol 70:23–40

    Article  CAS  PubMed  Google Scholar 

  127. Kummerova M, Zezulka S et al (2007) Photoinduced toxicity of fluoranthene on primary processes of photosynthesis in lichens. Lichenologist 39:91–100

    Article  Google Scholar 

  128. Cunningham SD, Berti WR (1993) Remediation of contaminated soil with green plants: an overview. In vitro Cell Dev Biol 29:207–212

    Article  Google Scholar 

  129. Raskin I, Nanda-Kumar PBA, Dushenkov S, Salt DE (1994) Bio-concentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    Article  CAS  Google Scholar 

  130. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  PubMed  Google Scholar 

  131. Sandra R, Drazenka S, Petra C, Lvanka ML, Marija RM, Sinisa S, Branka KP, Mirjana P (2010) Ecotoxicological assessment of industrial effluent using Duckweed (Lemna minor L.) as a test organism. Ecotoxicology 19(1):216–222

    Article  CAS  Google Scholar 

  132. Chaudhary E, Sharma P (2014) Duckweed plant: a better future option for phytoremediation. Int J Emerg Sci Eng (IJESE) 2(7):39–41

    Google Scholar 

  133. Mkandawire M, Tauert B et al (2004) Capacity of Lemna gibba L. (Duckweed) for uranium and arsenic phytoremediation in mine tailing waters. Int J Phytoremediation 6(4):347–362

    Article  CAS  PubMed  Google Scholar 

  134. Mkandawire M, Dudel EG (2005) Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Sci Total Environ 336(1–3):81–89

    Article  CAS  PubMed  Google Scholar 

  135. Bianconi D, Pietrini F, Massacci A, Iannelli MA (2013). Uptake of Cadmium by Lemna minor, a (hyper?-) accumulator plant involved in phytoremediation applications. E3S Web of conferences 1 13002. doi:http://dx.doi.org/10.1051/e3sconf/20130113002

    Google Scholar 

  136. Sharma SS, Gaur JP (1995) Potential of Lemna polyrrhiza for the removal of heavy metal. Ecol Eng 4:37–43

    Article  Google Scholar 

  137. Donganlar BZ, Seher C, Telat Y (2012) Metal uptake and physiological changes in Lemna gibba exposed to manganese and nickel. Int J Biol 4:148–151

    Google Scholar 

  138. Axtell NR, Sternberg SPK, Claussen K (2003) Lead and nickel removal using Microspora and Lemna minor. Biores Technol 89:41–48

    Article  CAS  Google Scholar 

  139. Horvat T, Vidakovic Cifrek Z, Orescanin V, Tkalec M, Pevalek Kozlina B (2007) Toxicity assessment of heavy metal mixtures by Lemna minor L. Sci Total Environ 384:229–238

    Article  CAS  PubMed  Google Scholar 

  140. Kaur L, Kasturi G, Sharma S (2012) Role of pH in the accumulation of lead and nickel by common Duckweed (Lemna minor). Inter J Bioassays 1(12):191–195

    Google Scholar 

  141. Uysal Y (2013) Removal of chromium ions from wastewater by Duckweed, Lemna minor L by using a pilot system with continuous flow. J Hazard Mater 263:486–492

    Article  CAS  PubMed  Google Scholar 

  142. Khellaf N, Zerdaoui M (2009) Growth response of the Duckweed Lemna minor to heavy metal pollution. Iranian J Environ Health Sci Eng 6(3):161–166

    CAS  Google Scholar 

  143. Stefan G, Christoph H, Christoph H, Kerstin K, Albrecht P (2010) Whole effluent assessment of industrial wastewater for determination of bat compliance. Environ Sci Pollut R 17:856–865

    Article  CAS  Google Scholar 

  144. Loveson A, Sivalingam R (2013) Phyto toxicological assessment of two backwater wetlands in Kannamaly, Ernakulam using aquatic macrophyte—Spirodela polyrhiza. J Environ Anal Toxicol 3(180)

    Google Scholar 

  145. Hegazy AK, Kabiel HF, Fawzy M (2009) Duckweed as heavy metal accumulator and pollution indicator in industrial wastewater ponds. Desalin Water Treat 12(1):400–406

    Article  CAS  Google Scholar 

  146. Smain M, Saida S, Michel C (2009) Toxicity and removal of heavy metals (Cadmium, Copper, and Zinc) by Lemna gibba. Ecotox Environ Safe 72:774–780

    Google Scholar 

  147. Ahmet S, Erdal O (2009) The accumulation of Arsenic, Uranium, and Boron in Lemna gibba L. Exposed to secondary effluents. Ecol Eng 35:1564–1567

    Article  Google Scholar 

  148. Teixeira S, Vieira MN, Espinha Marques J et al (2014) Bioremediation of an iron-rich mine effluent by Lemna Minor. Int J Phytoremediation 16:1228–1240

    Article  CAS  PubMed  Google Scholar 

  149. Clatworthy JN, Harper JL (1960) The comparative biology of closely related species living in the same area. Comparative Biol 13:307–324

    Google Scholar 

  150. Culley DD, Rejmankova E, Kvet J, Frye JB (1981) Production, chemical quality and use of duckweeds (Lemnaceae) in aquaculture, wastewater management, and animal feeds. J World Mariculture Soc 12(1):27–49

    CAS  Google Scholar 

  151. Robinson B, Duwig C, Bolan N, Kannathasan M, Saravanan A (2003) Uptake of arsenic by New Zealand watercress (Lepidium sativum). Sci Total Environ 301:67–73

    Article  CAS  PubMed  Google Scholar 

  152. Sizova OI, Kochetkov VV, Validov SZ, Boronin AM, Kosterin PV, Lyubun YV (2002) Arsenic-contaminated soils: genetically modified Pseudomonas spp. and their arsenic-phytoremediation potential. Soils Sediments 2:19–23

    Article  CAS  Google Scholar 

  153. Mkandawire M, Lyubun YV, Kosterin PV, Dudel EG (2004) Toxicity of arsenic species to Lemna gibba L. and the influence of phosphate on arsenic bioavailability. Environ Toxicol 19:26–35

    Article  CAS  PubMed  Google Scholar 

  154. Rahman MA, Hasegawa H, Ueda K, Maki T, Okumura C, Rahman MM (2007) Arsenic accumulation in duckweed (Spirodela polyrhiza L.): a good option for phytoremediation. Chemosphere 69:493–499

    Article  CAS  PubMed  Google Scholar 

  155. Rahman MA, Hasegawa H, Kitahara K, Maki T, Ueda K, Rahman MM (2008) The effects of phosphorous on the accumulation of arsenic in water fern (Azolla pinnata L.). J Eco Technol Res 14:21–24

    Google Scholar 

  156. Zhang X, Zhao FJ, Huang Q, Williams PN, Sun GX, Zhu YG (2009) Arsenic uptake and speciation in the rootless duckweed Wolffia globosa. New Phytol 182:421–428

    Article  CAS  PubMed  Google Scholar 

  157. Verma VK, Tewari S, Rai JPN (2008) Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes. Bioresour Technol 99:1932–1938

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Mohan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mohan, A., Bhatt, S.M., Girdhar, M., Goyal, G., Ansari, A.A., Rehman, H. (2016). Current Technical Perspective and Application of Aquatic Weeds in Phytoremediation. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-40148-5_9

Download citation

Publish with us

Policies and ethics