Skip to main content

Abstract

The liver is one of the largest organs of the adult body and most of its tissue is formed by hepatocyte cells, the main site of the metabolic conversions underlying its diverse physiological functions. Hepatocellular carcinoma is one of the most important human cancers. Genome-Scale Metabolic Models (GSMMs), mathematical representations of the cell metabolism in different organisms including humans, are useful tools to simulate metabolic phenotypes and understand metabolic diseases. In the last years, a few algorithms have been developed to generate tissue-specific metabolic models that allow the simulation of phenotypes for distinct cell types/tissues. This work based on general template GSMMs, which are integrated with available omics data. In this work, we propose to develop a pipeline for the systematic evaluation of these algorithms in the creation of models for regular hepatocytes and cancer cell lines, addressing the comparison of the final models obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tortora, G.J., Derrickson, B.H.: Principles of anatomy and physiology. Wiley, Hoboken, New Jersey, USA (2012)

    Google Scholar 

  2. Price, N.D., Reed, J.L., Palsson, B.Ø.: Genome-scale models of microbial cells: evaluating the consequences of constraints. Nature Rev. Microbiology 2(11), 886–897 (2004)

    Article  Google Scholar 

  3. Hao, T., Ma, H.-W., Zhao, X.-M., Goryanin, I.: Compartmentalization of the edinburgh human metabolic network. BMC Bioinformatics 11(1) (2010)

    Google Scholar 

  4. Duarte, N.C., Becker, S.A., Jamshidi, N., Thiele, I., Mo, M.L., Vo, T.D., Srivas, R., Palsson, B.Ø.: Global reconstruction of the human metabolic network based on genomic and bibliomic data. PNAS 104(6), 1777–1782 (2007)

    Article  Google Scholar 

  5. Thiele, I., Swainston, N., Fleming, R.M., Hoppe, A., Sahoo, S., Aurich, M.K., Haraldsdottir, H., Mo, M.L., Rolfsson, O., Stobbe, M.D., et al.: A community-driven global reconstruction of human metabolism. Nature Biotech. 31(5), 419–425 (2013)

    Article  Google Scholar 

  6. Mardinoglu, A., Agren, R., Kampf, C., Asplund, A., Uhlen, M., Nielsen, J.: Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nature Commun. 5 (2014)

    Google Scholar 

  7. Romero, P., Wagg, J., Green, M.L., Kaiser, D., Krummenacker, M., Karp, P.D.: Computational prediction of human metabolic pathways from the complete human genome. Genome Biology 6(1), R2 (2004)

    Google Scholar 

  8. Milacic, M., Haw, R., Rothfels, K., Wu, G., Croft, D., Hermjakob, H., D’Eustachio, P., Stein, L.: Annotating cancer variants and anti-cancer therapeutics in reactome. Cancers 4(4), 1180–1211 (2012)

    Article  Google Scholar 

  9. Covert, M.W., Knight, E.M., Reed, J.L., Herrgard, M.J., Palsson, B.O.: Integrating high-throughput and computational data elucidates bacterial networks. Nature 429(6987), 92–96 (2004)

    Article  Google Scholar 

  10. Orth, J.D., Thiele, I., Palsson, B.Ø.: What is flux balance analysis? Nature Biotech. 28(3), 245–248 (2010)

    Article  Google Scholar 

  11. Folger, O., Jerby, L., Frezza, C., Gottlieb, E., Ruppin, E., Shlomi, T.: Predicting selective drug targets in cancer through metabolic networks. Molecular Systems Biology 7(1), (2011)

    Google Scholar 

  12. Frezza, C., Zheng, L., Folger, O., Rajagopalan, K.N., MacKenzie, E.D., Jerby, L., Micaroni, M., Chaneton, B., Adam, J., Hedley, A., et al.: Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 477(7363), 225–228 (2011)

    Article  Google Scholar 

  13. Agren, R., Bordel, S., Mardinoglu, A., Pornputtapong, N., Nookaew, I., Nielsen, J.: Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using init. PLoS computational biology 8(5), e1002518 (2012)

    Google Scholar 

  14. Jerby, L., Wolf, L., Denkert, C., Stein, G.Y., Hilvo, M., Oresic, M., Geiger, T., Ruppin, E.: Metabolic associations of reduced proliferation and oxidative stress in advanced breast cancer. Cancer Research 72(22), 5712–5720 (2012)

    Article  Google Scholar 

  15. Baffy, G., Brunt, E.M., Caldwell, S.H.: Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace. Journal of Hepatology 56(6), 1384–1391 (2012)

    Article  Google Scholar 

  16. Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., Forman, D.: Global cancer statistics. CA 61(2), 69–90 (2011)

    Google Scholar 

  17. Kampf, C., Mardinoglu, A., Fagerberg, L., Hallström, B.M., Edlund, K., Lundberg, E., Pontén, F., Nielsen, J., Uhlen, M.: The human liver-specific proteome defined by transcriptomics and antibody-based profiling. The FASEB Journal 28(7), 2901–2914 (2014)

    Article  Google Scholar 

  18. Jerby, L., Shlomi, T., Ruppin, E.: Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Molecular Systems Biology 6(1) (2010)

    Google Scholar 

  19. Wang, Y., Eddy, J.A., Price, N.D.: Reconstruction of genome-scale metabolic models for 126 human tissues using mcadre. BMC Systems Biology 6(1), 153 (2012)

    Google Scholar 

  20. Gille, C., Bölling, C., Hoppe, A., Bulik, S., Hoffmann, S., Hübner, K., Karlstädt, A., Ganeshan, R., König, M., Rother, K., et al.: Hepatonet1: a comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology. Molecular Systems Biology 6(1) (2010)

    Google Scholar 

  21. Correia, S., Rocha, M.: A critical evaluation of methods for the reconstruction of tissue-specific models. In: Proc. 17th Portuguese Conference on Artificial Intelligence, EPIA 2015, Coimbra, September 8-11, 2015, pp. 340–352 (2015)

    Google Scholar 

  22. Knowles, B.B., Howe, C.C., Aden, D.P.: Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis b surface antigen. Science 209(4455), 497–499 (1980)

    Article  Google Scholar 

  23. Uhlen, M., Oksvold, P., Fagerberg, L., Lundberg, E., Jonasson, K., Forsberg, M., Zwahlen, M., Kampf, C., Wester, K., Hober, S., et al.: Towards a knowledge-based human protein atlas. Nature Biotech. 28(12), 1248–1250 (2010)

    Article  Google Scholar 

  24. Agren, R., Mardinoglu, A., Asplund, A., Kampf, C., Uhlen, M., Nielsen, J.: Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Molecular Systems Biology 10(3) (2014)

    Google Scholar 

  25. Vlassis, N., Pacheco, M.P., Sauter, T.: Fast reconstruction of compact context-specific metabolic network models. PLoS Comput. Biol. 10(1) (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ferreira, J., Correia, S., Rocha, M. (2016). Reconstruction of Metabolic Models for Liver Cancer Cells. In: Saberi Mohamad, M., Rocha, M., Fdez-Riverola, F., Domínguez Mayo, F., De Paz, J. (eds) 10th International Conference on Practical Applications of Computational Biology & Bioinformatics. PACBB 2016. Advances in Intelligent Systems and Computing, vol 477. Springer, Cham. https://doi.org/10.1007/978-3-319-40126-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40126-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40125-6

  • Online ISBN: 978-3-319-40126-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics