Skip to main content

Perspectives on Fetal Pacing

  • Chapter
  • First Online:
Fetal and Hybrid Procedures in Congenital Heart Diseases

Abstract

Congenital complete heart block (CHB) is now usually diagnosed in utero. It can be isolated, i.e. with a structurally normal heart or associated with structural heart disease in the fetus (left atrial isomerism, AV septal defect or AV discordance). Isolated congenital CHB is thought to result from the trans-placental passage of maternal antibodies, anti-Rho and anti-La. Although fetal heart block may generate a slow heart rate of 30 to 50 % of normal fetal rate, the majority of the fetuses with CHB does well and progress to term and can be delivered normally. However, a small part of the cases develops in utero heart failure, which manifests as fetal hydrops. This morbid association of diseases presents uniform fatal outcome, regardless of the presence or absence of an associated structural heart defect. If low-output failure and/or fetal heart rate cannot be reversed by medical treatment with positive chronotropic drugs or steroids, fetal ventricular pacing seems to be the next logical form of treatment. The arguments for trying to attempt fetal pacing are compelling. This therapeutic alternative offers some advantages. Firstly, definitive treatment can be introduced immediately after the first signs of fetal hydrops. This would allow the pregnancy to continue normally with recovery from congestive heart failure and normal fetal development until term, with stable respiratory and cardiovascular functions at delivery. This chapter describes different fetal pacing proposals to establish effective treatment for fetuses with complete heart block who are in heart failure – apart from premature delivery. The development of a purpose built pacing lead and the available expertise of a Fetal Medicine Specialist, Fetal Cardiologist, Pediatric Cardiac Surgeon and Electrophysiologist that can work together will optimize all and every chance of this procedure becoming a feasible alternative to treat these high-risk fetuses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Crowley DC, Dick M, Rayburn WF, et al. Two dimensional and M-mode echocardiographic evaluation of fetal arrhythmias. Clin Cardiol. 1985;8:1–10.

    Article  CAS  PubMed  Google Scholar 

  2. Achiron R, Glaser J, Gelernter I, et al. Extended fetal echocardiographic examination for detecting cardiac malformations in low risk pregnancies. Br Med J. 1992;304:671–4.

    Article  CAS  Google Scholar 

  3. Benacerraf BR, Sanders SP. Fetal echocardiography. Radiol Clin North Am. 1990;28:131–47.

    CAS  PubMed  Google Scholar 

  4. Kleinman CS, Donnerstein RL. Ultrasound assessment of cardiac function in the intact human fetus. J Am Coll Cardiol. 1985;5:84S–94.

    Article  CAS  PubMed  Google Scholar 

  5. Kleinman CS, Hobbins JC, Jaffe CC, et al. Echocardiographic studies of the human fetus: prenatal diagnosis of congenital heart disease and cardiac dysrhythmias. Pediatrics. 1980;65:1059–66.

    CAS  PubMed  Google Scholar 

  6. Groves AM, Allan LD, Rosenthal E. Outcome of isolated congenital complete heart block diagnosed in utero. Heart. 1996;75(2):190–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yamada H, Kato EH, Ebina Y, et al. Fetal treatment of congenital heart block ascribed to anti-SSA antibody: case reports with observation of cardiohemodynamics and review of the literature. Am J Reprod Immunol. 1999;42(4):226–32.

    Article  CAS  PubMed  Google Scholar 

  8. Richards DS, Wagman AJ, Cabaniss ML. Ascitis not due to congestive heart failure in a fetus with lupus induced heart block. Obstet Gynecol. 1990;76:957–9.

    CAS  PubMed  Google Scholar 

  9. Buyon JP, Swersky SH, Fox HE, et al. Intrauterine therapy for presumptive fetal myocaritis with acquired heart block due to systemic lupus erythematosus. Arthritis Rheum. 1987;30:44–9.

    Article  CAS  PubMed  Google Scholar 

  10. Chameides L, Truex RC, Vetter V, et al. Association of maternal systemic lupus erythematosus with congenital complete heart block. N Engl J Med. 1977;297(22):1204–7.

    Article  CAS  PubMed  Google Scholar 

  11. Jaeggi ET, Hamilton RM, Silverman ED, et al. Outcome of children with fetal, neonatal or childhood diagnosis of isolated congenital atrioventricular block. A single institution’s experience of 30 years. J Am Coll Cardiol. 2002;39(1):130–7.

    Article  PubMed  Google Scholar 

  12. Huhta JC, Strasburger JF, Carpenter RJ, et al. Pulsed doppler fetal echocardiography. J Clin Ultrasound. 1985;13:247–54.

    Article  CAS  PubMed  Google Scholar 

  13. Holsgreve W, Curry CJR, Golbus MS, et al. Investigation of nonimmune hydrops fetalis. Am J Obstet Gynecol. 1984;150:805–12.

    Article  Google Scholar 

  14. Donofrio MT, Gullquist SD, Mehta ID, et al. Congenital complete heart block: fetal management protocol, review of the literature, and report of the smallest successful pacemaker implantation. J Perinatol. 2004;24(2):112–7.

    Article  PubMed  Google Scholar 

  15. Schimidt KG, Ulmer HE, Silverman NH, et al. Perinatal outcome of fetal complete atrioventricular block: a multicenter experience. J Am Coll Cardiol. 1991;17:1360–6.

    Article  Google Scholar 

  16. Eliasson H, Sonesson S-E, Sharland G, et al. Isolated atrioventricular block in the fetus a retrospective, multinational, multicenter study of 175 patients. Circulation. 2011;124:1919–26.

    Article  PubMed  Google Scholar 

  17. Breur JM, Kapusta L, Stoutenbeek P, et al. Isolated congenital atrioventricular block diagnosed in utero: natural history and outcome. J Matern Fetal Neonatal Med. 2008;21:469–76.

    Article  PubMed  Google Scholar 

  18. Donofrio MT, Moon-Grady AJ, Hornberger LK et al.; American Heart Association Adults With Congenital Heart Disease Joint Committee of the Council on Cardiovascular Disease in the Young and Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and Council on Cardiovascular and Stroke Nursing. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation. 2014;129(21):2183–242.

    Google Scholar 

  19. Eronen M, Heikkila P, Teramo K. Congenital complete heart block in the fetus: hemodynamic features, antenatal treatment, and outcome in six cases. Pediatr Cardiol. 2001;22(5):385–92.

    Article  CAS  PubMed  Google Scholar 

  20. Bierman FZ, Baxi L, Jaffe I, et al. Fetal hydrops and congenital complete heart block: response to maternal steroid therapy. J Pediatr. 1988;12:646–8.

    Article  Google Scholar 

  21. Copel JA, Buyon JP, Kleinman CS. Successful in utero therapy of fetal heart block. Am J Obstet Gynecol. 1995;173:1384–90.

    Article  CAS  PubMed  Google Scholar 

  22. Carreira PE, Gutierrez-Larraya F, Gomez-Reino JJ. Successful intrauterine therapy with dexamethasone for fetal myocarditis an heart block in a mother with systemic lupus erythematosus. J Rheumatol. 1993;20:1204–7.

    CAS  PubMed  Google Scholar 

  23. Anandakumar C, Biswas A, Chew SS, et al. Direct fetal therapy for hydrops secondary to congenital atrioventricular heart block. Obstet Gynecol. 1996;87:835–7.

    CAS  PubMed  Google Scholar 

  24. Fesslova V, Vignati G, Brucato A, et al. The impact of treatment of the fetus by maternal therapy on the fetal and postnatal outcomes for fetuses diagnosed with isolated complete atrioventricular block. Cardiol Young. 2009;19:282–90.

    Article  PubMed  Google Scholar 

  25. Groves AMM, Allan LD, Rosenthal E. Therapeutic trial of sympathomimetics in three cases of complete heart block in the fetus. Circulation. 1995;92:3394–6.

    Article  CAS  PubMed  Google Scholar 

  26. Rosenthal E. Fetal heart block. In: Allan L, Hornberger L, Sharland G, editors. Textbook of fetal cardiology. 1st ed. London: Greenwich Medical Media; 2000. p. 438–51.

    Google Scholar 

  27. Abrams ME, Meredith KS, Kinnard P. Hydrops fetalis: a retrospective review of cases reported to a large national database and identification of risk factors associated with death. Pediatrics. 2007;120:84–9.

    Article  PubMed  Google Scholar 

  28. Dell’ Orfano J, Chou HA, Park DA, et al. The monolithic fetal pacemaker: prototype lead design for closed thorax deployment. Pacing Clin Electrophysiol. 2003;26(4 pt 1):805–11.

    Article  Google Scholar 

  29. Carpenter Jr RJ, Strasbuerger JF, Garson A, et al. Fetal ventricular pacing for hydrops secondary to complete atrioventricular block. J Am Coll Cardiol. 1986;8:1434–6.

    Article  PubMed  Google Scholar 

  30. Walkinshaw SA, Welch CR, McCormack J. In utero pacing for fetal congenital heart block. Fetal Diagn Ther. 1994;9:183–5.

    Article  CAS  PubMed  Google Scholar 

  31. Longaker MT, Golbus MS, Filly RA, et al. Maternal outcome after open fetal surgery. A review of the first 17 human cases. JAMA. 1991;265:737–41.

    Article  CAS  PubMed  Google Scholar 

  32. Hisaba WJ, Cavalheiro S, Almodim CG, et al. Intrauterine myelomeningocele repair postnatal results and follow-up at 3.5 years of age--initial experience from a single reference service in Brazil. Childs Nerv Syst. 2012;28(3):461–7.

    Article  PubMed  Google Scholar 

  33. Assad RS, Jatene MB, Moreira LF, et al. Fetal heart block: a new experimental model to assess fetal pacing. Pacing Clin Electrophysiol. 1994;17:1256–63.

    Article  CAS  PubMed  Google Scholar 

  34. Silverman NH, Kohl T, Harrison MR, et al. Experimental fetal surgery in the animal model and in the human fetus. In: Momma K, Imai Y, editors. Proceedings of the Second World Congress of Pediatric Cardiology and Cardiac Surgery. Armonk: Futura Publishing Co; 1998. p. 622–3.

    Google Scholar 

  35. Crombleholme TM, Harrison MR, Longaker MT. Complete heart block in fetal lambs, I technique and acute physiological response. J Pediatr Surg. 1990;25:587–93.

    Article  CAS  PubMed  Google Scholar 

  36. Scagliotti D, Shimokochi DD, Pringle KC. Permanent cardiac pacemaker implant in the fetal lamb. Pacing Clin Eletrophysiol. 1987;10:1253–61.

    Article  CAS  Google Scholar 

  37. Eghtesady P, Michelfelder EC, Knilans TK, et al. Fetal surgical management of congenital heart block in a hydropic fetus: lessons learned from a clinical experience. J Thorac Cardiovasc Surg. 2011;141(3):835–7.

    Article  PubMed  Google Scholar 

  38. Assad RS, Zielinsky P, Kalil R, et al. New lead for in utero pacing for fetal congenital heart block. J Thorac Cardiovasc Surg. 2003;126(1):300–2.

    Article  PubMed  Google Scholar 

  39. Assad RS, Thomaz PG, Valente AS, et al. Experimental assessment of a new electrode for fetal pacing. Braz J Cardiovasc Surg. 2006;21(3):272–82.

    Article  Google Scholar 

  40. Ruhparwar A, Tebbenjohanns J, Niehaus M, et al. Transplanted fetal cardiomyocytes as cardiac pacemaker. Eur J Cardiothorac Surg. 2002;21:853–7.

    Article  PubMed  Google Scholar 

  41. Miake J, Marban E, Nuss HB. Biological pacemaker created by gene transfer. Nature. 2002;419:132–3.

    Article  CAS  PubMed  Google Scholar 

  42. Potapova I, Plotnikov A, Lu Z, et al. Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ Res. 2004;94:952–9.

    Article  CAS  PubMed  Google Scholar 

  43. Plotnikov AN, Sosunov EA, Qu J, et al. Biological pacemaker implanted in canine left bundle branch provides ventricular escape rhythms that have physiologically acceptable rates. Circulation. 2004;109:506–12.

    Article  PubMed  Google Scholar 

  44. Qu J, Plotnikov AN, Danilo Jr P, et al. Expression and function of a biological pacemaker in canine heart. Circulation. 2003;107:1106–9.

    Article  PubMed  Google Scholar 

  45. Xue T, Cho HC, Akar FG, et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation. 2005;111:11–20.

    Article  PubMed  Google Scholar 

  46. Kehat I, Khimovich L, Caspi O, et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol. 2004;22:1282–9.

    Article  CAS  PubMed  Google Scholar 

  47. Sill B, Alpatov IV, Pacak CA, et al. Implantation of engineered tissue in the rat heart (Video Article). J Vis Exp. 2010. (www.jove.com/video/1139) 28(e1139):1–2.

  48. Choi YH, Stamm C, Hammer PE, et al. Cardiac conduction through engineered tissue. Am J Pathol. 2006;169(1):72–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Boudjemline Y, Rosenblatt J, de La Villeon G, et al. Development of a new lead for in utero fetal pacing. Prenat Diagn. 2010;30(2):122–6.

    Article  PubMed  Google Scholar 

  50. Zhou L, Chmait R, Bar-Cohen Y, et al. Percutaneously injectable fetal pacemaker: electrodes, mechanical design and implantation. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:6600–3.

    PubMed  PubMed Central  Google Scholar 

  51. Nicholson A, Chmait R, Bar-Cohen Y, et al. Percutaneously injectable fetal pacemaker: electronics, pacing thresholds, and power budget. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:5730–3.

    PubMed  PubMed Central  Google Scholar 

  52. Loeb GE, Zhou L, Zheng K. Design and testing of a percutaneously implantable fetal pacemaker. Ann Biomed Eng. 2013;41(1):17–27.

    Article  PubMed  Google Scholar 

  53. Bar-Cohen Y, Loeb GE, Pruetz JD, et al. Preclinical testing and optimization of a novel fetal micropacemaker. Heart Rhythm. 2015;12(7):1683–90.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kohl T, Strumper D, Witteler R, et al. Fetoscopic direct fetal cardiac access in sheep: an important experimental milestone along the route to human fetal cardiac intervention. Circulation. 2000;102:1602–4.

    Article  CAS  PubMed  Google Scholar 

  55. Kohl T, Szabo Z, Suda K, et al. Fetoscopic and open transumbilical fetal cardiac catheterization in sheep. Potential approaches for human fetal cardiac intervention. Circulation. 1997;95(4):1048–53.

    Article  CAS  PubMed  Google Scholar 

  56. Kohl T, Witteler R, Strumper D, et al. Operative techniques and strategies for minimally invasive fetoscopic fetal cardiac interventions in sheep. Surg Endosc. 2000;14(5):424–30.

    Article  CAS  PubMed  Google Scholar 

  57. VanderWall KJ, Meuli M, Szabo Z, et al. Percutaneous access to the uterus for fetal surgery. J Laparoendosc Surg. 1996;6:S65–7.

    Article  PubMed  Google Scholar 

  58. Estes JM, MacGillivary TE, Hedrick MH, et al. Fetoscopic surgery for the treatment of congenital anomalies. J Pediatr Surg. 1992;27(8):950–4.

    Article  CAS  PubMed  Google Scholar 

  59. Kirchhof P, Kohl T, Eckardt L, et al. Simultaneous in utero assessment of AV nodal and ventricular electrophysiologic parameters in the fetal sheep heart. Basic Res Cardiol. 2001;96(3):251–7.

    Article  CAS  PubMed  Google Scholar 

  60. Kohl T, McElhinney DB, Farrel J, et al. Impact of fetoscopic versus open fetal surgery on fetoplacental blood flow and outcome in human fetuses. Eur Heart J. 1999;20:644A.

    Google Scholar 

  61. Kohl T, Szabo Z, Suda K, et al. Percutaneous fetal access and uterine closure for fetoscopic surgery. Lessons learned from 16 consecutive procedures in pregnant sheep. Surg Endosc. 1997;11(8):819–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Samy Assad MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Assad, R.S. (2016). Perspectives on Fetal Pacing. In: Butera, G., Cheatham, J., Pedra, C., Schranz, D., Tulzer, G. (eds) Fetal and Hybrid Procedures in Congenital Heart Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-40088-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40088-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40086-0

  • Online ISBN: 978-3-319-40088-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics