Skip to main content

PET Physics and Instrumentation

  • Chapter
  • First Online:
Basic Science of PET Imaging

Abstract

The design of instrumentation for positron emission tomography (PET) scanners has vastly progressed over the past ~30 years. In this chapter, we focus on the motivations and technical advancements that lead to the development of multimodality imaging systems, including the integration of PET and CT into combined PET/CT scanners for whole-body imaging. We also provide a review of recent advances in time-of-flight (TOF) PET, ending with a description of current state-of-the-art TOF-PET/CT imaging systems. We begin with an overview of PET detector design and explore the trade-offs associated with the choice of scintillator, photodetector, and their arrangement. Next, PET data correction approaches, including attenuation correction, for PET/CT are discussed along with a technical description of PET/CT system hardware. Specific concepts and instrumentation aspects of TOF-PET are then reviewed, ending with a brief discussion on the outlook and future directions for PET instrumentation research. This chapter highlights recent advances in PET instrumentation and describes their impact and contribution to the improvement in clinical PET imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anger HO. Gamma-ray and positron scintillation camera. Nucleonics. 1963;21:10–56.

    Google Scholar 

  2. Brownell GL, et al. New developments in positron scintigraphy and the application of cyclotron produced positron emitters In: Medical Radioisotope Scintigraphy; 1969; IAEA (Proceedings Series), Vienna. p. 163–76.

    Google Scholar 

  3. Kuhl DE, Edwards RQ. Cylindrical and section radioisotope scanning of the liver and brain. Radiology. 1964;83(5):926–36.

    Article  CAS  PubMed  Google Scholar 

  4. Cormack AM. Representation of a function by its line integrals, with some radiological applications. J Appl Phys. 1963;34(9):2722–7.

    Article  Google Scholar 

  5. Phelps ME, et al. Design considerations for a positron emission transaxial tomograph (PET III). IEEE Trans Nucl Sci. 1976;23(1):516–22.

    Article  Google Scholar 

  6. Cho ZH, Farukhi MR. Bismuth germanate as a potential scintillation detector in positron cameras. J Nucl Med. 1977;18(8):840–4.

    CAS  PubMed  Google Scholar 

  7. Terpogossian MM, et al. Design considerations for a positron emission transverse tomograph (pett-V) for imaging of brain. J Comput Assist Tomogr. 1978;2(5):539–44.

    Article  CAS  Google Scholar 

  8. Bohm C, Eriksson L, Bergstrom M, Litton J, Sundman R, Singh M. A computer assisted ring detector positron camera system for reconstruction tomography of the brain. IEEE Trans Nucl Sci. 1978;NS-25:624–37.

    Article  Google Scholar 

  9. Thompson CJ, Yamamoto YL, Meyer E. Positome II: a high efficiency positron imaging device for dynamic brain studies. IEEE Trans Nucl Sci. 1979;26(1):583–9.

    Article  Google Scholar 

  10. Derenzo SE, et al. Imaging properties of a positron tomograph with 280-Bgo-crystals. IEEE Trans Nucl Sci. 1981;28(1):81–9.

    Article  Google Scholar 

  11. Cho ZH, et al. High-resolution circular ring positron tomograph with dichotomic sampling: Dichotom-I. Phys Med Biol. 1983;28(11):1219–34.

    Article  CAS  PubMed  Google Scholar 

  12. Wong WH, et al. Performance characteristics of the University of Texas TOF PET-I camera. J Nucl Med. 1984;25(5):46–7.

    Google Scholar 

  13. Burnham CA, Bradshaw J, Kaufman D, Chesler DA, Brownell GL. Positron tomograph employing a one dimension BGO scintillation camera. IEEE Trans Nucl Sci. 1983;30:661–4.

    Article  Google Scholar 

  14. Birks JB. The theory and practice of scintillation counting. London: Pergamon Press; 1964.

    Google Scholar 

  15. Derenzo SE, et al. The quest for the ideal inorganic scintillator. Nucl Instrum Methods Phys Res Sect A: Accelerators Spectrometers Detectors and Associated Equipment. 2003;505(1-2):111–7.

    Article  CAS  Google Scholar 

  16. Saint-Gobain Crystals. LYSO/Prelude420 datasheet. 2015. Available from: http://www.crystals.saint-gobain.com/uploadedFiles/SG-Crystals/Documents/PreLude420datasheet.pdf.

  17. Anger HO. Scintillation camera. Rev Sci Instrum. 1958;29(1):27–33.

    Article  CAS  Google Scholar 

  18. Ter-Pogossian MM, et al. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology. 1975;114(1):89–98.

    Article  CAS  PubMed  Google Scholar 

  19. Hoffman EJ, et al. Design and performance-characteristics of a whole-body positron transaxial tomograph. J Nucl Med. 1976;17(6):493–502.

    Google Scholar 

  20. Surti S, et al. Optimizing the performance of a PET detector using discrete GSO crystals on a continuous lightguide. IEEE Trans Nucl Sci. 2000;47:1030–6.

    Article  CAS  Google Scholar 

  21. Casey ME, Nutt R. A multicrystal two dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci. 1986;33(1):460–3.

    Article  Google Scholar 

  22. Wong W-H, et al. A 2-dimensional detector decoding study on BGO arrays with quadrant sharing photomultipliers. IEEE Trans Nucl Sci. 1994;41(4):1453–7.

    Article  CAS  Google Scholar 

  23. Lightstone AW, et al. A Bismuth Germanate-avalanche photodiode module designed for use in high resolution positron emission tomography. IEEE Trans Nucl Sci. 1986;33(1):456–9.

    Article  Google Scholar 

  24. Watanabe M, et al. A high resolution PET for animal studies. IEEE Trans Med Imaging. 1992;11:577–80.

    Article  CAS  PubMed  Google Scholar 

  25. Watanabe M, et al. A compact position-sensitive detector for PET. IEEE Trans Nucl Sci. 1995;42(4):1090–4.

    Article  Google Scholar 

  26. Cherry SR, et al. MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci. 1997;44:1161–6.

    Article  CAS  Google Scholar 

  27. Lecomte R, et al. Design and engineering aspects of a high-resolution positron tomograph for small animal imaging. IEEE Trans Nucl Sci. 1994;41(4):1446–52.

    Article  Google Scholar 

  28. Ziegler SI, et al. A prototype high-resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals. Eur J Nucl Med. 2001;28(2):136–43.

    Article  CAS  PubMed  Google Scholar 

  29. Vaska P, et al. RatCAP: miniaturized head-mounted PET for conscious rodent brain imaging. IEEE Trans Nucl Sci. 2004;51(5):2718–22.

    Article  Google Scholar 

  30. Derenzo SE. Mathematical removal of positron range blurring in high-resolution tomography. IEEE Trans Nucl Sci. 1986;33(1):565–9.

    Article  Google Scholar 

  31. Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol. 1999;44(3):781–99.

    Article  CAS  PubMed  Google Scholar 

  32. Brooks RA, et al. Sampling requirements and detector motion for positron emission tomography. IEEE Trans Nucl Sci. 1979;NS-26:2760–3.

    Article  Google Scholar 

  33. Surti S, et al. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med. 2007;48(3):471–80.

    PubMed  Google Scholar 

  34. Bettinardi V, et al. Physical performance of the new hybrid PET/CT discovery-690. Med Phys. 2011;38(10):5394–411.

    Article  CAS  PubMed  Google Scholar 

  35. Jakoby BW, et al. Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol. 2011;56(8):2375–89.

    Article  CAS  PubMed  Google Scholar 

  36. Goertzen AL, et al. NEMA NU 4-2008 comparison of preclinical PET imaging systems. J Nucl Med. 2012;53(8):1300–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bergstrom M, et al. Determination of object contour from projections for attenuation correction in cranial positron emission tomography. J Comput Assist Tomogr. 1982;6(2):365–72.

    Article  CAS  PubMed  Google Scholar 

  38. Hill DL, et al. Medical image registration. Phys Med Biol. 2001;46(3):R1–45.

    Article  CAS  PubMed  Google Scholar 

  39. Hutton BF, Braun M. Software for image registration: algorithms, accuracy, efficacy. Semin Nucl Med. 2003;33(3):180–92.

    Article  PubMed  Google Scholar 

  40. Slomka PJ. Software approach to merging molecular with anatomic information. J Nucl Med. 2004;45:36S–45.

    PubMed  Google Scholar 

  41. Lang TF, et al. Description of a prototype emission-transmission computed tomography imaging system. J Nucl Med. 1992;30(10):1881–7.

    Google Scholar 

  42. Beyer T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41(8):1369–79.

    CAS  PubMed  Google Scholar 

  43. Charron M, et al. Image analysis in patients with cancer studied with a combined PET and CT scanner. Clin Nucl Med. 2000;25(11):905–10.

    Article  CAS  PubMed  Google Scholar 

  44. Kluetz PG, et al. Combined PET/CT imaging in oncology. Impact on patient management. Clin Positron Imaging. 2000;3(6):223–30.

    Article  PubMed  Google Scholar 

  45. Meltzer CC, et al. Whole-body FDG PET imaging in the abdomen: value of combined PET/CT. J Nucl Med. 2001;42(5):35p.

    Google Scholar 

  46. Meltzer CC, et al. Combined FDG PET/CT imaging in head and neck cancer: impact on patient management. J Nucl Med. 2001;42(5):36p.

    Google Scholar 

  47. Yeung HW, Schoder H, Larson SM. Utility of PET/CT for assessing equivocal PET lesions in oncology-initial experience. J Nucl Med. 2002;43:32P.

    Google Scholar 

  48. Alessio AM, et al. PET/CT scanner instrumentation, challenges, and solutions. In: Alavi A, editor. PET imaging I. Philadelphia: W. B. Saunders Company; 2004. p. 1017–32.

    Google Scholar 

  49. Rhem K, et al. Display of merged multimodality brain images using interleaved pixels with independent color scales. J Nucl Med. 1994;35(11):1815–21.

    Google Scholar 

  50. Hutton BF, et al. Image registration: an essential tool for nuclear medicine. Eur J Nucl Med. 2002;29(4):559–77.

    Article  CAS  Google Scholar 

  51. Stokking R, Zubal G, Viergever MA. Display of fused images: methods, interpretation, and diagnostic improvements. Semin Nucl Med. 2003;33(3):219–27.

    Article  PubMed  Google Scholar 

  52. Baum KG, Helguera M, Krol A. Fusion viewer: a new tool for fusion and visualization of multimodal medical data sets. J Digit Imaging. 2008;21(1):59–68.

    Article  Google Scholar 

  53. Bailey DL. Transmission scanning in emission tomography. Eur J Nucl Med. 1998;25(7):774–87.

    Article  CAS  PubMed  Google Scholar 

  54. Valk PE, et al., editors. Positron emission tomography: basic science and clinical practice. London: Springer; 2003.

    Google Scholar 

  55. LaCroix KJ, et al. Investigation of the use of X-ray CT images for attenuation compensation in SPECT. IEEE Trans Nucl Sci. 1994;41(6):2793–9.

    Article  Google Scholar 

  56. Kinahan PE, et al. Attenuation correction for a combined 3D PET/CT scanner. Med Phys. 1998;25(10):2046–53.

    Article  CAS  PubMed  Google Scholar 

  57. Kinahan PE, Hasegawa BH, Beyer T. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med. 2003;33(3):166–79.

    Article  PubMed  Google Scholar 

  58. Nakamoto Y, et al. PET/CT: comparison of quantitative tracer uptake between germanium and CT transmission attenuation-corrected images. J Nucl Med. 2002;43(9):1137–43.

    PubMed  Google Scholar 

  59. Burger C, et al. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging. 2002;29(7):922–7.

    Article  CAS  PubMed  Google Scholar 

  60. Ollinger JM. Model-based scatter correction for fully 3D PET. Phys Med Biol. 1996;41(1):153–76.

    Article  CAS  PubMed  Google Scholar 

  61. Watson CC, Newport D, Casey ME. A single scatter simulation technique for scatter correction in 3D PET. Three-Dimens Image Reconstr Radiol Nucl Med. 1996;4:255–68.

    Article  Google Scholar 

  62. Accorsi R, et al. Optimization of a fully 3D single scatter simulation algorithm for 3D PET. Phys Med Biol. 2004;49(12):2577–98.

    Article  PubMed  Google Scholar 

  63. Werner ME, Surti S, Karp JS. Implementation and evaluation of a 3D PET single scatter simulation with TOF modeling. In: 2006 IEEE Nuclear Science Symposium and Medical Imaging Conference, San Diego; 2006.

    Google Scholar 

  64. Watson CC. Extension of single scatter simulation to scatter correction of time-of-flight PET. IEEE Trans Nucl Sci. 2007;54(5):1679–86.

    Article  Google Scholar 

  65. Knoll GF. Radiation detection and measurement. 4th ed. Hoboken: Wiley; 2010.

    Google Scholar 

  66. Kalender WA, Wolf H, Suess C. Dose reduction in CT by anatomically adapted tube current modulation. II phantom measurements. Med Phys. 1999;26(11):2248–53.

    Article  CAS  PubMed  Google Scholar 

  67. McCollough CH, Bruesewitz MR, Kofler JM. CT dose reduction and dose management tools: overview of available options. Radiographics. 2006;26(2):503–12.

    Article  PubMed  Google Scholar 

  68. Tzedakis A, et al. The effect of z overscanning on patient effective dose from multidetector helical computed tomography examinations. Med Phys. 2008;32(6):1621–9.

    Article  Google Scholar 

  69. Deak PD, et al. Effects of adaptive section collimation on patient radiation dose in multisection spiral CT. Radiology. 2009;252(1):140–7.

    Article  PubMed  Google Scholar 

  70. Elstrom RL, et al. Combined PET and low-dose, noncontrast CT scanning obviates the need for additional diagnostic contrast-enhanced CT scans in patients undergoing staging or restaging for lymphoma. Ann Oncol. 2008;19(10):1770–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Alessio AM, et al. Weight-based, low-dose pediatric whole-body PET/CT protocols. J Nucl Med. 2009;50(10):1570–7.

    Article  PubMed  Google Scholar 

  72. Xia T, et al. Ultra-low dose CT attenuation correction for PET/CT. Phys Med Biol. 2012;2012(57):2.

    Google Scholar 

  73. Tonkopi E, Ross AA, MacDonald A. CT dose optimization for whole-body PET/CT examinations. Am J Roentgenol. 2013;201(2):257–63.

    Article  Google Scholar 

  74. Lewellen TK, Time-of-flight PET. Semin Nucl Med. 1998;28(3):268–75.

    Article  CAS  PubMed  Google Scholar 

  75. Conti M, et al. Comparison of fast scintillators with TOF PET potential. IEEE Trans Nucl Sci. 2009;56(3):926–33.

    Article  CAS  Google Scholar 

  76. Daube-Witherspoon ME, et al. Imaging performance of a LaBr3-based time-of-flight PET scanner. Phys Med Biol. 2010;55:45–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tomitani T. Image reconstruction and noise evaluation in photon time-of-flight assisted positron emission tomography. IEEE Trans Nucl Sci. 1981;28(6):4582–9.

    Article  Google Scholar 

  78. Surti S, et al. Investigation of time-of-flight benefit for fully 3-D PET. IEEE Trans Med Imaging. 2006;25(5):529–38.

    Article  PubMed  Google Scholar 

  79. Budinger TF. Time-of-flight positron emission tomography – status relative to conventional PET. J Nucl Med. 1983;24(1):73–6.

    CAS  PubMed  Google Scholar 

  80. Moses WW. Time of flight in PET revisited. IEEE Trans Nucl Sci. 2003;50(5):1325–30.

    Article  Google Scholar 

  81. Moses WW, Derenzo SE. Prospects for time-of-flight PET using LSO scintillator. IEEE Trans Nucl Sci. 1999;46(3):474–8.

    Article  CAS  Google Scholar 

  82. Spinks TJ, Bloomfield PM. A comparison of count rate performance for 15O-water blood flow studies in the CTI HR+ and Accel tomographs in 3D mode. In: IEEE Nuclear Science Symposium and Medical Imaging Conference, Norfolk; 2002.

    Google Scholar 

  83. Moszynski M, et al. New Photonis XP20D0 photomultiplier for fast timing in nuclear medicine. Nucl Instrum Meth A. 2006;567(1):31–5.

    Article  CAS  Google Scholar 

  84. Thompson CJ, Camborde M-L, Casey ME. A central positron source to perform the timing alignment of detectors in a PET scanner. IEEE Trans Nucl Sci. 2005;52(5):1300–4.

    Article  Google Scholar 

  85. Perkins AE, et al. Time of flight coincidence timing calibration techniques using radioactive sources. In: 2005 IEEE Nuclear Science Symposium and Medical Imaging Conference, San Juan; 2005.

    Google Scholar 

  86. Lenox MW, et al. Digital time alignment of high resolution PET Inveon block detectors. In: IEEE Nuclear Science Symposium and Medical Imaging Conference, San Diego; 2006.

    Google Scholar 

  87. Karp JS, et al. Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med. 2008;49(3):462–70.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lois C, et al. An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging. J Nucl Med. 2010;51:237–45.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Conti M. Why is TOF PET reconstruction a more robust method in the presence of inconsistent data? Phys Med Biol. 2011;56:155–68.

    Article  PubMed  Google Scholar 

  90. El Fakhri G, et al. Improvement in lesion detection with whole-body oncologic TOF-PET. J Nucl Med. 2011;52:347–53 (* joint first authors).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Surti S, et al. Impact of time-of-flight PET on whole-body oncologic studies: a human observer lesion detection and localization study. J Nucl Med. 2011;52(5):712–9.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Daube-Witherspoon ME, et al. Determination of accuracy and precision of lesion uptake measurements in human subjects with time-of-flight PET. J Nucl Med. 2014;55:602–7.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Surti S. Update on time-of-flight PET imaging. J Nucl Med. 2015;56(1):98–105.

    Article  PubMed  Google Scholar 

  94. Buzhan P, et al. Silicon photomultiplier and its possible applications. Nucl Inst Methods Phys Res A. 2003;504(1–3):48–52.

    Article  CAS  Google Scholar 

  95. Degenhardt C, et al. The digital Silicon Photomultiplier — A novel sensor for the detection of scintillation light. In: 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), Orlando; 2009.

    Google Scholar 

  96. Vandenberghe S, Marsden PK. PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol. 2015;60:R115.

    Article  PubMed  Google Scholar 

  97. Miller M, et al. Initial characterization of a prototype digital photon counting PET system. Soc Nucl Med Ann Meet Abstr. 2014;55:658.

    Google Scholar 

  98. Levin C, et al. Initial results of simultaneous whole-body ToF PET/MR. Soc Nucl Med Ann Meet Abstr. 2014;55(Supplement 1):660P.

    Google Scholar 

  99. Schmand M, et al. BrainPET: first human tomograph for simultaneous (functional) PET and MR imaging. Soc Nucl Med Ann Meet Abstr. 2007;48(Supplement 2):45P.

    Google Scholar 

  100. Delso G, et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52(12):1914–22.

    Article  PubMed  Google Scholar 

  101. Freifelder R, et al. Design and performance of the head PENN-PET scanner. IEEE Trans Nucl Sci. 1994;41(4):1436–40.

    Article  Google Scholar 

  102. Wienhard K, et al. The ECAT HRRT: performance and first clinical application of the new high resolution research tomograph. IEEE Trans Nucl Sci. 2002;49(1):104–10.

    Article  Google Scholar 

  103. Watanabe M, et al. A new high-resolution PET scanner dedicated to brain research. IEEE Trans Nucl Sci. 2002;49(3):634–9.

    Article  Google Scholar 

  104. Karp JS, et al. Performance of a brain PET camera based on anger-logic gadolinium oxyorthosilicate detectors. J Nucl Med. 2003;44(8):1340–9.

    CAS  PubMed  Google Scholar 

  105. Surti S. Radionuclide methods and instrumentation for breast cancer detection and diagnosis. Semin Nucl Med. 2013;43:271–80.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ishii K, et al. First achievement of less than 1 mm FWHM resolution in practical semiconductor animal PET scanner. Nucl Instrum Methods Phys Res, Sect A. 2007;576(2-3):435–40.

    Article  CAS  Google Scholar 

  107. Drezet A, et al. CdZnTe detectors for small field of view positron emission tomographic imaging. Nucl Instrum Methods Phys Res, Sect A. 2007;571(1-2):465–70.

    Article  CAS  Google Scholar 

  108. Mitchell GS, et al. CdTe strip detector characterization for high resolution small animal PET. IEEE Trans Nucl Sci. 2008;55(3):870–6.

    Article  CAS  Google Scholar 

  109. Vaska P, et al. Ultra-high resolution PET: A CZT-based scanner for the mouse brain. J Nucl Med. 2009;50(2):293.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suleman Surti PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Krishnamoorthy, S., Schmall, J.P., Surti, S. (2017). PET Physics and Instrumentation. In: Khalil, M. (eds) Basic Science of PET Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-40070-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40070-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40068-6

  • Online ISBN: 978-3-319-40070-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics