Skip to main content

Role of PET/CT in Radiotherapy Treatment Planning

  • Chapter
  • First Online:
Basic Science of PET Imaging

Abstract

This chapter focuses on the rationale, target validation, dose prescription verification and evaluation, and recent clinical achievements in the field of integrating positron emission tomography imaging into radiotherapy treatment planning. Application of functional imaging to radiotherapy is a rapidly expanding field with the development of new modalities and techniques. Functional imaging of positron emission tomography in conjunction with radiotherapy provides new avenues toward the clinical application of dose painting as a new radiotherapy strategy delivering optimized dose redistribution according to the functional imaging information to further improve tumor control.

New biological imaging methodologies mainly based on positron emission tomography/computed tomography, magnetic resonance imaging, and magnetic resonance spectroscopy imaging, in conjunction with radiotherapy, make dose painting possible. It can be used to draw a three-dimensional map of radiobiological relevant parameters as its inherent potential to trace the real target volume, consisting of tumor cells that require a therapeutic dose to control the disease. Positron emission tomography/computed tomography is outstanding and widely used in daily clinical practice. It offers molecular biological information on the tumor microenvironment in addition to anatomical imaging and shows significant biological heterogeneity of tumors, such as metabolism, proliferation, hypoxia, radioresistance cell density, and perfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three dimensional

AC:

Attenuation correction

ACE:

11C-acetate

AMT:

Alpha-[11C]methyl-L-tryptophan

ART:

Adaptive radiotherapy

ATSM:

Copper-64 diacetyl-bis (N4-methy-lthiosemicarbazone)

BTV:

Biological target volume

CECT:

Contrast-enhanced computed tomography

CH:

Chemotherapy

CHO:

11C/18F-choline

CMR:

Complete metabolic response

CRC:

Colorectal carcinoma

CRT:

Chemo radiation therapy

CT:

Computed tomography

CTV:

Clinical target volume

DLBCL:

Diffuse large B-cell lymphoma

DPBC:

Dose painting by contours

DPBN:

Dose painting by numbers

EBRT:

External beam radiation therapy

EORTC:

European Organization for Research and Treatment of Cancer

EP:

Extramedullary plasmacytoma

FAZA:

18F-fluoroazomycinarabinoside

FDA:

Food and Drug Administration

FDG:

18F-fluorodeoxyglucose

FDOPA:

18F-3,4-dihydroxy-6-18F-fluoro-l-phenylalanine

FES:

18F-fluoroestradiol

FET:

18F-fluoro-ethyl-tyrosine

FIGO:

International Federation of Gynecology and Obstetrics

FL:

Follicular lymphoma

FLIPI:

Follicular Lymphoma International Prognostic Index

FLT:

18F-fluorothymidine

FMISO:

18F-fluoromisonidazole

GTV:

Gross tumor volume

HL:

Hodgkin’s lymphoma

HNC:

Head and neck cancers

IMAT:

Intensity-modulated arc therapy

IMRT:

Intensity-modulated radiation therapy

INRT:

Involved node radiation therapy

ISRT:

Involved site radiation therapy

LARC:

Locally advanced rectal cancer

LC:

Lung cancer

LN:

Lymph node

LRC:

Locoregional control

MET:

11C-methionine

MM:

Multiple myeloma

MRI:

Magnetic resonance imaging

NHL:

Non-Hodgkin’s lymphoma

NPV:

Negative predictive value

NSCLC:

Non-small-cell lung cancer

OAR:

Organ at risk

OS:

Overall survival

PCa:

Prostate cancer

pCR:

Pathological complete response

PET:

Positron emission tomography

PMR:

Partial metabolic response

PP:

Paraprotein

pPR:

Pathological partial response

PPV:

Positive predictive value

PTV:

Planning target volume

RC:

Renal cancer

RECIST:

Response criteria in solid tumor

RIWGRC:

Revised IWG response criteria

ROI:

Region of interest

RT:

Radiation therapy

SBP:

Solitary bone plasmacytoma

SBRT:

Stereotactic body radiation therapy

SIB:

Simultaneous integrated boost

SMD:

Stable metabolic disease

SP:

Solitary plasmacytoma

SUV:

Standardized uptake values

T1-gad:

Gadolinium-enhanced T1 weighted

TCP:

Tumor control probability

TVD:

Target volume delineation

References

  1. Das SK, Ten Haken RK. Functional and molecular image guidance in radiotherapy treatment planning optimization. Semin Radiat Oncol. 2011;21(2):111–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shi X, et al. PET/CT imaging-guided dose painting in radiation therapy. Cancer Lett. 2014;355(2):169–75.

    Article  CAS  PubMed  Google Scholar 

  3. Kunkler IH, et al. Review of current best practice and priorities for research in radiation oncology for elderly patients with cancer: the International Society of Geriatric Oncology (SIOG) task force. Ann Oncol Off J Eur Soc Med Oncol/ESMO. 2014;25(11):2134–46.

    Article  CAS  Google Scholar 

  4. Wahl RL, et al. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med Off Pub Soc Nucl Med. 2009;50 Suppl 1:122S–50.

    CAS  Google Scholar 

  5. Gregoire V, et al. PET-based treatment planning in radiotherapy: a new standard? J Nucl Med Off Pub Soc Nucl Med. 2007;48 Suppl 1:68S–77.

    CAS  Google Scholar 

  6. Chiti A, Kirienko M, Grégoire V. Clinical use of PET-CT data for radiotherapy planning: what are we looking for? Radiother Oncol. 2010;96(3):277–9.

    Article  PubMed  Google Scholar 

  7. Zhu A, Lee D, Shim H. Metabolic positron emission tomography imaging in cancer detection and therapy response. Semin Oncol. 2011;38(1):55–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pinkawa M, Eble MJ, Mottaghy FM. PET and PET/CT in radiation treatment planning for prostate cancer. Expert Rev Anticancer Ther. 2011;11(7):1033–9.

    Article  PubMed  Google Scholar 

  9. Ford EC, et al. 18F-FDG PET/CT for image-guided and intensity-modulated radiotherapy. J Nucl Med Off Pub Soc Nucl Med. 2009;50(10):1655–65.

    Google Scholar 

  10. Picchio M, et al. Clinical evidence on PET/CT for radiation therapy planning in prostate cancer. Radiother Oncol J Eur Soc Therapeutic Radiol Oncol. 2010;96(3):347–50.

    Article  Google Scholar 

  11. Picchio M, et al. (11)C-Choline PET/CT as a guide to radiation treatment planning of lymph-node relapses in prostate cancer patients. Eur J Nucl Med Mol Imaging. 2014;41(7):1270–9.

    CAS  PubMed  Google Scholar 

  12. Liu WS, et al. The role of pretreatment FDG-PET in nasopharyngeal carcinoma treated with intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2012;82(2):561–6.

    Article  PubMed  Google Scholar 

  13. Higashi K, et al. 11C-acetate PET imaging of lung cancer: comparison with 18F-FDG PET and 99mTc-MIBI SPET. Eur J Nucl Med Mol Imaging. 2004;31(1):13–21.

    Article  PubMed  Google Scholar 

  14. Hellwig D, et al. Diagnostic performance and prognostic impact of FDG-PET in suspected recurrence of surgically treated non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2006;33(1):13–21.

    Article  PubMed  Google Scholar 

  15. Auperin A, et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(13):2181–90.

    Article  CAS  Google Scholar 

  16. Schaake-Koning C, et al. Radiosensitization by cytotoxic drugs. The EORTC experience by the Radiotherapy and Lung Cancer Cooperative Groups. Lung Cancer. 1994;10 Suppl 1:S263–70.

    Article  PubMed  Google Scholar 

  17. Machtay M, et al. Higher biologically effective dose of radiotherapy is associated with improved outcomes for locally advanced non-small cell lung carcinoma treated with chemoradiation: an analysis of the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys. 2012;82(1):425–34.

    Article  PubMed  Google Scholar 

  18. Machtay M, et al. Defining local-regional control and its importance in locally advanced non-small cell lung carcinoma. J Thorac Oncol Off Pub Int Assoc Study Lung Cancer. 2012;7(4):716–22.

    Google Scholar 

  19. Bradley J. A review of radiation dose escalation trials for non-small cell lung cancer within the Radiation Therapy Oncology Group. Semin Oncol. 2005;32(2 Suppl 3):S111–3.

    Article  PubMed  Google Scholar 

  20. Aerts HJ, Lambin P, Ruysscher DD. FDG for dose painting: a rational choice. Radiother Oncol J Eur Soc Therapeutic Radiol Oncol. 2010;97(2):163–4.

    Article  Google Scholar 

  21. Bentzen SM, Gregoire V. Molecular imaging-based dose painting: a novel paradigm for radiation therapy prescription. Semin Radiat Oncol. 2011;21(2):101–10.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pommier P, et al. Impact of (18)F-FDG PET on treatment strategy and 3D radiotherapy planning in non-small cell lung cancer: a prospective multicenter study. Am J Roentgenol. 2010;195(2):350–5.

    Article  Google Scholar 

  23. Nestle U, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med Off Pub Soc Nucl Med. 2005;46(8):1342–8.

    Google Scholar 

  24. Erdi YE, et al. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol J Eur Soc Therapeutic Radiol Oncol. 2002;62(1):51–60.

    Article  Google Scholar 

  25. Ceresoli GL, et al. Role of computed tomography and [18F] fluorodeoxyglucose positron emission tomography image fusion in conformal radiotherapy of non-small cell lung cancer: a comparison with standard techniques with and without elective nodal irradiation. Tumori. 2007;93(1):88–96.

    PubMed  Google Scholar 

  26. Yin LJ, et al. Utilization of PET-CT in target volume delineation for three-dimensional conformal radiotherapy in patients with non-small cell lung cancer and atelectasis. Multidiscip Respir Med. 2013;8(1):21.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mah K, et al. The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys. 2002;52(2):339–50.

    Article  PubMed  Google Scholar 

  28. Bradley J, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2004;59(1):78–86.

    Article  PubMed  Google Scholar 

  29. van Der Wel A, et al. Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2-N3M0 non-small-cell lung cancer: a modeling study. Int J Radiat Oncol Biol Phys. 2005;61(3):649–55.

    Article  Google Scholar 

  30. Troost EG, et al. 18F-FLT PET/CT for early response monitoring and dose escalation in oropharyngeal tumors. J Nucl Med Off Pub Soc Nucl Med. 2010;51(6):866–74.

    Google Scholar 

  31. Witte M, et al. Dealing with geometric uncertainties in dose painting by numbers: introducing the DeltaVH. Radiother Oncol J Eur Soc Therapeutic Radiol Oncol. 2011;100(3):402–6.

    Article  Google Scholar 

  32. Deveau MA, et al. Feasibility and sensitivity study of helical tomotherapy for dose painting plans. Acta Oncol. 2010;49(7):991–6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Thorwarth D, Alber M. Implementation of hypoxia imaging into treatment planning and delivery. Radiother Oncol J Eur Soc Therapeutic Radiol Oncol. 2010;97(2):172–5.

    Article  Google Scholar 

  34. Vanderstraeten B, et al. [18F]fluoro-deoxy-glucose positron emission tomography ([18F]FDG-PET) voxel intensity-based intensity-modulated radiation therapy (IMRT) for head and neck cancer. Radiother Oncol J Eur Soc Therapeutic Radiol Oncol. 2006;79(3):249–58.

    Article  CAS  Google Scholar 

  35. Rickhey M, et al. A biologically adapted dose-escalation approach, demonstrated for 18F-FET-PET in brain tumors. Strahlentherapie und Onkologie Organ der Deutschen Rontgengesellschaft … [et al]. 2008;184(10):536–42.

    Google Scholar 

  36. Berwouts D, et al. Three-phase adaptive dose-painting-by-numbers for head-and-neck cancer: initial results of the phase I clinical trial. Radiother Oncol J Eur Soc Therapeutic Radiol Oncol. 2013;107(3):310–6.

    Article  Google Scholar 

  37. Mac Manus MP, et al. Metabolic (FDG-PET) response after radical radiotherapy/chemoradiotherapy for non-small cell lung cancer correlates with patterns of failure. Lung Cancer. 2005;49(1):95–108.

    Article  PubMed  Google Scholar 

  38. Greco C, et al. Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer. 2007;57(2):125–34.

    Article  PubMed  Google Scholar 

  39. Nehmeh SA, Erdi YE. Respiratory motion in positron emission tomography/computed tomography: a review. Semin Nucl Med. 2008;38(3):167–76.

    Article  PubMed  Google Scholar 

  40. Nehmeh SA, et al. Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med Off Pub Soc Nucl Med. 2002;43(7):876–81.

    Google Scholar 

  41. Nehmeh SA, et al. Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer. Med Phys. 2002;29(3):366–71.

    Article  CAS  PubMed  Google Scholar 

  42. Trinkaus ME, et al. Imaging of hypoxia with 18F-FAZA PET in patients with locally advanced non-small cell lung cancer treated with definitive chemoradiotherapy. J Med Imaging Radiat Oncol. 2013;57(4):475–81.

    Article  PubMed  Google Scholar 

  43. Postema EJ, et al. Initial results of hypoxia imaging using 1-alpha-D: −(5-deoxy-5-[18F]-fluoroarabinofuranosyl)-2-nitroimidazole (18F-FAZA). Eur J Nucl Med Mol Imaging. 2009;36(10):1565–73.

    Article  CAS  PubMed  Google Scholar 

  44. Pignon JP, et al. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. Radiother Oncol J Eur Soc Therapeutic Radiol Oncol. 2009;92(1):4–14.

    Article  Google Scholar 

  45. Arens AI, et al. FDG-PET/CT in radiation treatment planning of head and neck squamous cell carcinoma. Q J Nucl Med Mol Imaging Off Pub Italian Assoc Nucl Med. 2011;55(5):521–8.

    CAS  Google Scholar 

  46. Romesser PB, et al. Superior prognostic utility of gross and metabolic tumor volume compared to standardized uptake value using PET/CT in head and neck squamous cell carcinoma patients treated with intensity-modulated radiotherapy. Ann Nucl Med. 2012;26(7):527–34.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Newbold K, Powell C. PET/CT in radiotherapy planning for head and neck cancer. Front Oncol. 2012;2:189.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kirienko M, et al. Prognostic value of pre-therapy (18)FDG PET/CT for the outcome of (18)FDG PET-guided SIB-IMRT in patients with head and neck cancer. Eur J Nucl Med Mol Imaging. 2012;39:S201–2.

    Article  Google Scholar 

  49. Vesselle H, et al. Fluorodeoxyglucose uptake of primary non-small cell lung cancer at positron emission tomography: new contrary data on prognostic role. Clin Cancer Res Off J Am Assoc Cancer Res. 2007;13(11):3255–63.

    Article  CAS  Google Scholar 

  50. Agarwal M, et al. Revisiting the prognostic value of preoperative (18)F-fluoro-2-deoxyglucose ((18)F-FDG) positron emission tomography (PET) in early-stage (I & II) non-small cell lung cancers (NSCLC). Eur J Nucl Med Mol Imaging. 2010;37(4):691–8.

    Article  PubMed  Google Scholar 

  51. Torizuka T, et al. Prognostic value of 18F-FDG PET in patients with head and neck squamous cell cancer. Am J Roentgenol. 2009;192(4):W156–60.

    Article  Google Scholar 

  52. Machtay M, et al. Pretreatment FDG-PET standardized uptake value as a prognostic factor for outcome in head and neck cancer. Head Neck. 2009;31(2):195–201.

    Article  PubMed  Google Scholar 

  53. Halfpenny W, et al. FDG-PET. A possible prognostic factor in head and neck cancer. Br J Cancer. 2002;86(4):512–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Castaldi P, et al. Can “early” and “late”18F-FDG PET-CT be used as prognostic factors for the clinical outcome of patients with locally advanced head and neck cancer treated with radio-chemotherapy? Radiother Oncol J Eur Soc Therapeutic Radiol Oncol. 2012;103(1):63–8.

    Article  Google Scholar 

  55. Kunkel M, et al. Radiation response non-invasively imaged by [18F]FDG-PET predicts local tumor control and survival in advanced oral squamous cell carcinoma. Oral Oncol. 2003;39(2):170–7.

    Article  PubMed  Google Scholar 

  56. Xie P, et al. Prognostic value of 18F-FDG PET/CT before and after radiotherapy for locally advanced nasopharyngeal carcinoma. Ann Oncol Off J Eur Soc Med Oncol/ESMO. 2010;21(5):1078–82.

    Article  CAS  Google Scholar 

  57. Herholz K, et al. Correlation of glucose consumption and tumor cell density in astrocytomas. A stereotactic PET study. J Neurosurg. 1993;79(6):853–8.

    Article  CAS  PubMed  Google Scholar 

  58. Rajendran JG, et al. Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10(7):2245–52.

    Article  CAS  Google Scholar 

  59. Zimny M, et al. FDG – a marker of tumour hypoxia? A comparison with [18F]fluoromisonidazole and pO2-polarography in metastatic head and neck cancer. Eur J Nucl Med Mol Imaging. 2006;33(12):1426–31.

    Article  CAS  PubMed  Google Scholar 

  60. Jain VK, et al. Effects of 2-deoxy-D-glucose on glycolysis, proliferation kinetics and radiation response of human cancer cells. Int J Radiat Oncol Biol Phys. 1985;11(5):943–50.

    Article  CAS  PubMed  Google Scholar 

  61. Vercauteren T, et al. Deformation field validation and inversion applied to adaptive radiation therapy. Phys Med Biol. 2013;58(15):5269–86.

    Article  PubMed  Google Scholar 

  62. Castadot P, et al. Adaptive functional image-guided IMRT in pharyngo-laryngeal squamous cell carcinoma: is the gain in dose distribution worth the effort? Radiother Oncol J Eur Soc Therapeutic Radiol Oncol. 2011;101(3):343–50.

    Article  Google Scholar 

  63. Hansen EK, et al. Repeat CT imaging and replanning during the course of IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2006;64(2):355–62.

    Article  PubMed  Google Scholar 

  64. Bhide SA, et al. Weekly volume and dosimetric changes during chemoradiotherapy with intensity-modulated radiation therapy for head and neck cancer: a prospective observational study. Int J Radiat Oncol Biol Phys. 2010;76(5):1360–8.

    Article  PubMed  Google Scholar 

  65. Ho KF, et al. Monitoring dosimetric impact of weight loss with kilovoltage (kV) cone beam CT (CBCT) during parotid-sparing IMRT and concurrent chemotherapy. Int J Radiat Oncol Biol Phys. 2012;82(3):e375–82.

    Article  PubMed  Google Scholar 

  66. Height R, et al. The dosimetric consequences of anatomic changes in head and neck radiotherapy patients. J Med Imaging Radiat Oncol. 2010;54(5):497–504.

    Article  PubMed  Google Scholar 

  67. Romesser PB, et al. A prognostic volumetric threshold of gross tumor volume in head and neck cancer patients treated with radiotherapy. Am J Clin Oncol. 2012;37(2):154–61.

    Article  CAS  Google Scholar 

  68. Picchio M, et al. Predictive value of pre-therapy (18)F-FDG PET/CT for the outcome of (18)F-FDG PET-guided radiotherapy in patients with head and neck cancer. Eur J Nucl Med Mol Imaging. 2014;41(1):21–31.

    Article  CAS  PubMed  Google Scholar 

  69. Lin SH, et al. Propensity score-based comparison of long-term outcomes with 3-dimensional conformal radiotherapy vs intensity-modulated radiotherapy for esophageal cancer. Int J Radiat Oncol Biol Phys. 2012;84(5):1078–85.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chen YJ, et al. Helical tomotherapy for radiotherapy in esophageal cancer: a preferred plan with better conformal target coverage and more homogeneous dose distribution. Med Dosim Off J Am Assoc Med Dosim. 2007;32(3):166–71.

    Google Scholar 

  71. Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology. 2004;231(2):305–32.

    Article  PubMed  Google Scholar 

  72. Krause BJ, Schwarzenbock S, Souvatzoglou M. FDG PET and PET/CT. Recent Results Cancer Res. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer. 2013;187:351–69.

    Google Scholar 

  73. Drudi S, et al. Esophagogram and CT vs endoscopic and surgical specimens in the diagnosis of esophageal carcinoma. Radiol Med. 2002;103(4):344–52.

    Google Scholar 

  74. Leong T, et al. A prospective study to evaluate the impact of FDG-PET on CT-based radiotherapy treatment planning for oesophageal cancer. Radiother Oncol J Eur Soc Therapeutic Radiol Oncol. 2006;78(3):254–61.

    Article  Google Scholar 

  75. Moureau-Zabotto L, et al. Impact of CT and 18F-deoxyglucose positron emission tomography image fusion for conformal radiotherapy in esophageal carcinoma. Int J Radiat Oncol Biol Phys. 2005;63(2):340–5.

    Article  PubMed  Google Scholar 

  76. Han D, et al. Comparison of (18)F-fluorothymidine and (18)F-fluorodeoxyglucose PET/CT in delineating gross tumor volume by optimal threshold in patients with squamous cell carcinoma of thoracic esophagus. Int J Radiat Oncol Biol Phys. 2010;76(4):1235–41.

    Article  PubMed  Google Scholar 

  77. Vali FS, et al. Comparison of standardized uptake value-based positron emission tomography and computed tomography target volumes in esophageal cancer patients undergoing radiotherapy. Int J Radiat Oncol Biol Phys. 2010;78(4):1057–63.

    Article  PubMed  Google Scholar 

  78. van Heijl M, et al. Influence of ROI definition, partial volume correction and SUV normalization on SUV-survival correlation in oesophageal cancer. Nucl Med Commun. 2010;31(7):652–8.

    PubMed  Google Scholar 

  79. Hatt M, et al. Impact of partial-volume effect correction on the predictive and prognostic value of baseline 18F-FDG PET images in esophageal cancer. J Nucl Med Off Pub Soc Nucl Med. 2012;53(1):12–20.

    CAS  Google Scholar 

  80. Clarke M, et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;366(9503):2087–106.

    Article  CAS  PubMed  Google Scholar 

  81. Fisher B, et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med. 2002;347(16):1233–41.

    Article  PubMed  Google Scholar 

  82. Romestaing P, et al. Role of a 10-Gy boost in the conservative treatment of early breast cancer: results of a randomized clinical trial in Lyon, France. J Clin Oncol Off J Am Soc Clin Oncol. 1997;15(3):963–8.

    CAS  Google Scholar 

  83. Bartelink H, et al. Impact of a higher radiation dose on local control and survival in breast-conserving therapy of early breast cancer: 10-year results of the randomized boost versus no boost EORTC 22881–10882 trial. J Clin Oncol Off J Am Soc Clin Oncol. 2007;25(22):3259–65.

    Article  Google Scholar 

  84. Ford EC, et al. Comparison of FDG-PET/CT and CT for delineation of lumpectomy cavity for partial breast irradiation. Int J Radiat Oncol Biol Phys. 2008;71(2):595–602.

    Article  PubMed  Google Scholar 

  85. Li XA, et al. Variability of target and normal structure delineation for breast cancer radiotherapy: an RTOG Multi-Institutional and Multiobserver Study. Int J Radiat Oncol Biol Phys. 2009;73(3):944–51.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Beadle BM, et al. Patterns of regional recurrence after definitive radiotherapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2010;76(5):1396–403.

    Article  PubMed  Google Scholar 

  87. Segaert I, et al. Additional value of PET-CT in staging of clinical stage IIB and III breast cancer. Breast J. 2010;16(6):617–24.

    Article  PubMed  Google Scholar 

  88. Groheux D, et al. The yield of 18F-FDG PET/CT in patients with clinical stage IIA, IIB, or IIIA breast cancer: a prospective study. J Nucl Med Off Pub Soc Nucl Med. 2011;52(10):1526–34.

    CAS  Google Scholar 

  89. Aukema TS, et al. Detection of extra-axillary lymph node involvement with FDG PET/CT in patients with stage II-III breast cancer. Eur J Cancer. 2010;46(18):3205–10.

    Article  PubMed  Google Scholar 

  90. Fuster D, et al. Preoperative staging of large primary breast cancer with [18F]fluorodeoxyglucose positron emission tomography/computed tomography compared with conventional imaging procedures. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(29):4746–51.

    Article  Google Scholar 

  91. Heusner TA, et al. Breast cancer staging in a single session: whole-body PET/CT mammography. J Nucl Med Off Pub Soc Nucl Med. 2008;49(8):1215–22.

    Google Scholar 

  92. Groheux D, et al. Effect of (18)F-FDG PET/CT imaging in patients with clinical stage II and III breast cancer. Int J Radiat Oncol Biol Phys. 2008;71(3):695–704.

    Article  PubMed  Google Scholar 

  93. Kruse V, et al. Serum tumor markers and PET/CT imaging for tumor recurrence detection. Ann Nucl Med. 2013;27(2):97–104.

    Article  CAS  PubMed  Google Scholar 

  94. Linden HM, Dehdashti F. Novel methods and tracers for breast cancer imaging. Semin Nucl Med. 2013;43(4):324–9.

    Article  PubMed  Google Scholar 

  95. Ferme C, et al. Chemotherapy plus involved-field radiation in early-stage Hodgkin’s disease. N Engl J Med. 2007;357(19):1916–27.

    Article  CAS  PubMed  Google Scholar 

  96. Cheson BD. Role of functional imaging in the management of lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(14):1844–54.

    Article  Google Scholar 

  97. Pinilla I, et al. Diagnostic value of CT, PET and combined PET/CT performed with low-dose unenhanced CT and full-dose enhanced CT in the initial staging of lymphoma. Q J Nucl Med Mol Imaging Off Pub Italian Assoc Nucl Med. 2011;55(5):567–75.

    CAS  Google Scholar 

  98. Barrington SF, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32(27):3048–58.

    Article  Google Scholar 

  99. Kostakoglu L, et al. FDG-PET after 1 cycle of therapy predicts outcome in diffuse large cell lymphoma and classic Hodgkin disease. Cancer. 2006;107(11):2678–87.

    Article  PubMed  Google Scholar 

  100. Hutchings M, et al. FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood. 2006;107(1):52–9.

    Article  CAS  PubMed  Google Scholar 

  101. Zinzani PL, et al. Early interim 18F-FDG PET in Hodgkin’s lymphoma: evaluation on 304 patients. Eur J Nucl Med Mol Imaging. 2012;39(1):4–12.

    Article  PubMed  Google Scholar 

  102. Gallamini A, et al. The predictive value of positron emission tomography scanning performed after two courses of standard therapy on treatment outcome in advanced stage Hodgkin’s disease. Haematologica. 2006;91(4):475–81.

    PubMed  Google Scholar 

  103. Cerci JJ, et al. 18F-FDG PET after 2 cycles of ABVD predicts event-free survival in early and advanced Hodgkin lymphoma. J Nucl Med Off Pub Soc Nucl Med. 2010;51(9):1337–43.

    CAS  Google Scholar 

  104. Hutchings M, et al. Prognostic value of interim FDG-PET after two or three cycles of chemotherapy in Hodgkin lymphoma. Ann Oncol Off J Eur Soc Med Oncol/ESMO. 2005;16(7):1160–8.

    Article  CAS  Google Scholar 

  105. Terasawa T, et al. Fluorine-18-fluorodeoxyglucose positron emission tomography for interim response assessment of advanced-stage Hodgkin’s lymphoma and diffuse large B-cell lymphoma: a systematic review. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(11):1906–14.

    Article  Google Scholar 

  106. Gallamini A, et al. Early interim 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin’s lymphoma: a report from a joint Italian-Danish study. J Clin Oncol Off J Am Soc Clin Oncol. 2007;25(24):3746–52.

    Article  CAS  Google Scholar 

  107. Gallamini A, et al. Interim positron emission tomography scan in Hodgkin lymphoma: definitions, interpretation rules, and clinical validation. Leuk Lymphoma. 2009;50(11):1761–4.

    Article  PubMed  Google Scholar 

  108. Meignan M, Gallamini A, Haioun C. Report on the first international workshop on interim-PET-scan in lymphoma. Leuk Lymphoma. 2009;50(8):1257–60.

    Article  PubMed  Google Scholar 

  109. Biggi A, et al. International validation study for interim PET in ABVD-treated, advanced-stage hodgkin lymphoma: interpretation criteria and concordance rate among reviewers. J Nucl Med Off Pub Soc Nucl Med. 2013;54(5):683–90.

    CAS  Google Scholar 

  110. Zijlstra JM, et al. 18F-fluoro-deoxyglucose positron emission tomography for post-treatment evaluation of malignant lymphoma: a systematic review. Haematologica. 2006;91(4):522–9.

    PubMed  Google Scholar 

  111. Terasawa T, et al. 18F-FDG PET for posttherapy assessment of Hodgkin’s disease and aggressive Non-Hodgkin’s lymphoma: a systematic review. J Nucl Med Off Pub Soc Nucl Med. 2008;49(1):13–21.

    Google Scholar 

  112. Radford JA, et al. The significance of residual mediastinal abnormality on the chest radiograph following treatment for Hodgkin’s disease. J Clin Oncol Off J Am Soc Clin Oncol. 1988;6(6):940–6.

    CAS  Google Scholar 

  113. Surbone A, et al. Residual abdominal masses in aggressive non-Hodgkin’s lymphoma after combination chemotherapy: significance and management. J Clin Oncol Off J Am Soc Clin Oncol. 1988;6(12):1832–7.

    CAS  Google Scholar 

  114. Canellos GP. Residual mass in lymphoma may not be residual disease. J Clin Oncol Off J Am Soc Clin Oncol. 1988;6(6):931–3.

    CAS  Google Scholar 

  115. Engert A, et al. Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial. Lancet. 2012;379(9828):1791–9.

    Article  CAS  PubMed  Google Scholar 

  116. Specht L, et al. Modern radiation therapy for Hodgkin lymphoma: field and dose guidelines from the international lymphoma radiation oncology group (ILROG). Int J Radiat Oncol Biol Phys. 2014;89(4):854–62.

    Article  PubMed  Google Scholar 

  117. Girinsky T, Ghalibafian M. Radiotherapy of hodgkin lymphoma: indications, new fields, and techniques. Semin Radiat Oncol. 2007;17(3):206–22.

    Article  PubMed  Google Scholar 

  118. Girinsky T, et al. Is FDG-PET scan in patients with early stage Hodgkin lymphoma of any value in the implementation of the involved-node radiotherapy concept and dose painting? Radiother Oncol J Eur Soc Therapeutic Radiol Oncol. 2007;85(2):178–86.

    Article  Google Scholar 

  119. Zelenetz AD, et al. Non-Hodgkin’s lymphomas, version 3.2012. J Natl Compr Canc Netw. 2012;10(12):1487–98.

    CAS  PubMed  Google Scholar 

  120. Blum RH, et al. Frequent impact of [18F]fluorodeoxyglucose positron emission tomography on the staging and management of patients with indolent non-Hodgkin’s lymphoma. Clin Lymphoma. 2003;4(1):43–9.

    Article  PubMed  Google Scholar 

  121. Jerusalem G, et al. Whole-body positron emission tomography using 18F-fluorodeoxyglucose compared to standard procedures for staging patients with Hodgkin’s disease. Haematologica. 2001;86(3):266–73.

    CAS  PubMed  Google Scholar 

  122. Jerusalem G, et al. Positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG) for the staging of low-grade non-Hodgkin’s lymphoma (NHL). Ann Oncol Off J Eur Soc Med Oncol/ESMO. 2001;12(6):825–30.

    Article  CAS  Google Scholar 

  123. Hueltenschmidt B, et al. Whole body positron emission tomography in the treatment of Hodgkin disease. Cancer. 2001;91(2):302–10.

    Article  CAS  PubMed  Google Scholar 

  124. Spaepen K, et al. Prognostic value of positron emission tomography (PET) with fluorine-18 fluorodeoxyglucose ([18F]FDG) after first-line chemotherapy in non-Hodgkin’s lymphoma: is [18F]FDG-PET a valid alternative to conventional diagnostic methods? J Clin Oncol Off J Am Soc Clin Oncol. 2001;19(2):414–9.

    CAS  Google Scholar 

  125. Spaepen K, Mortelmans L. Evaluation of treatment response in patients with lymphoma using [18F]FDG-PET: differences between non-Hodgkin’s lymphoma and Hodgkin’s disease. Q J Nucl Med Mol Imaging Off Pub Italian Assoc Nucl Med. 2001;45(3):269–73.

    CAS  Google Scholar 

  126. Filippi AR, et al. Interim positron emission tomography and clinical outcome in patients with early stage Hodgkin lymphoma treated with combined modality therapy. Leuk Lymphoma. 2013;54(6):1183–7.

    Article  CAS  PubMed  Google Scholar 

  127. Filippi AR, et al. Radiation therapy in primary mediastinal B-cell lymphoma with positron emission tomography positivity after rituximab chemotherapy. Int J Radiat Oncol Biol Phys. 2013;87(2):311–6.

    Article  CAS  PubMed  Google Scholar 

  128. Kyle RA, Rajkumar SV. Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leukemia. 2009;23(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  129. Durie BG. The role of anatomic and functional staging in myeloma: description of Durie/Salmon plus staging system. Eur J Cancer. 2006;42(11):1539–43.

    Article  PubMed  Google Scholar 

  130. Mose S, et al. Role of radiotherapy in the treatment of multiple myeloma. Strahlentherapie und Onkologie Organ der Deutschen Rontgengesellschaft … [et al]. 2000;176(11):506–12.

    Google Scholar 

  131. Leigh BR, et al. Radiation therapy for the palliation of multiple myeloma. Int J Radiat Oncol Biol Phys. 1993;25(5):801–4.

    Article  CAS  PubMed  Google Scholar 

  132. Shin SM, et al. Feasibility and efficacy of local radiotherapy with concurrent novel agents in patients with multiple myeloma. Clin Lymphoma Myeloma Leuk. 2014;14(6):480–4.

    Article  PubMed  Google Scholar 

  133. Fonti R, et al. Metabolic tumor volume assessed by 18F-FDG PET/CT for the prediction of outcome in patients with multiple myeloma. J Nucl Med Off Pub Soc Nucl Med. 2012;53(12):1829–35.

    CAS  Google Scholar 

  134. Hernandez JA, Land KJ, McKenna RW. Leukemias, myeloma, and other lymphoreticular neoplasms. Cancer. 1995;75(1 Suppl):381–94.

    Article  CAS  PubMed  Google Scholar 

  135. Knowling MA, Harwood AR, Bergsagel DE. Comparison of extramedullary plasmacytomas with solitary and multiple plasma cell tumors of bone. J Clin Oncol Off J Am Soc Clin Oncol. 1983;1(4):255–62.

    CAS  Google Scholar 

  136. Bolek TW, Marcus Jr RB, Mendenhall NP. Solitary plasmacytoma of bone and soft tissue. Int J Radiat Oncol Biol Phys. 1996;36(2):329–33.

    Article  CAS  PubMed  Google Scholar 

  137. Jyothirmayi R, et al. Radiotherapy in the treatment of solitary plasmacytoma. Br J Radiol. 1997;70(833):511–6.

    Article  CAS  PubMed  Google Scholar 

  138. Frassica DA, et al. Solitary plasmacytoma of bone: Mayo Clinic experience. Int J Radiat Oncol Biol Phys. 1989;16(1):43–8.

    Article  CAS  PubMed  Google Scholar 

  139. Holland J, et al. Plasmacytoma. Treatment results and conversion to myeloma. Cancer. 1992;69(6):1513–7.

    Article  CAS  PubMed  Google Scholar 

  140. Liebross RH, et al. Solitary bone plasmacytoma: outcome and prognostic factors following radiotherapy. Int J Radiat Oncol Biol Phys. 1998;41(5):1063–7.

    Article  CAS  PubMed  Google Scholar 

  141. Dimopoulos MA, et al. Curability of solitary bone plasmacytoma. J Clin Oncol Off J Am Soc Clin Oncol. 1992;10(4):587–90.

    CAS  Google Scholar 

  142. Alexiou C, et al. Extramedullary plasmacytoma: tumor occurrence and therapeutic concepts. Cancer. 1999;85(11):2305–14.

    Article  CAS  PubMed  Google Scholar 

  143. Strojan P, et al. Extramedullary plasmacytoma: clinical and histopathologic study. Int J Radiat Oncol Biol Phys. 2002;53(3):692–701.

    Article  PubMed  Google Scholar 

  144. Mayr NA, et al. The role of radiation therapy in the treatment of solitary plasmacytomas. Radiother Oncol J Eur Soc Therapeutic Radiol Oncol. 1990;17(4):293–303.

    Article  CAS  Google Scholar 

  145. Bataille R, Sany J. Solitary myeloma: clinical and prognostic features of a review of 114 cases. Cancer. 1981;48(3):845–51.

    Article  CAS  PubMed  Google Scholar 

  146. Tsang RW, et al. Solitary plasmacytoma treated with radiotherapy: impact of tumor size on outcome. Int J Radiat Oncol Biol Phys. 2001;50(1):113–20.

    Article  CAS  PubMed  Google Scholar 

  147. Wilder RB, et al. Persistence of myeloma protein for more than one year after radiotherapy is an adverse prognostic factor in solitary plasmacytoma of bone. Cancer. 2002;94(5):1532–7.

    Article  CAS  PubMed  Google Scholar 

  148. Mulligan ME. Imaging techniques used in the diagnosis, staging, and follow-up of patients with myeloma. Acta Radiol. 2005;46(7):716–24.

    Article  CAS  PubMed  Google Scholar 

  149. Orchard K, et al. Fluoro-deoxyglucose positron emission tomography imaging for the detection of occult disease in multiple myeloma. Br J Haematol. 2002;117(1):133–5.

    Article  PubMed  Google Scholar 

  150. Schirrmeister H, et al. Initial results in the assessment of multiple myeloma using 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2002;29(3):361–6.

    Article  CAS  PubMed  Google Scholar 

  151. Schirrmeister H, et al. Positron emission tomography (PET) for staging of solitary plasmacytoma. Cancer Biother Radiopharm. 2003;18(5):841–5.

    Article  PubMed  Google Scholar 

  152. Mendenhall CM, Thar TL, Million RR. Solitary plasmacytoma of bone and soft tissue. Int J Radiat Oncol Biol Phys. 1980;6(11):1497–501.

    Article  CAS  PubMed  Google Scholar 

  153. Kelly PJ, et al. Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg. 1987;66(6):865–74.

    Article  CAS  PubMed  Google Scholar 

  154. Gross MW, et al. The value of F-18-fluorodeoxyglucose PET for the 3-D radiation treatment planning of malignant gliomas. Int J Radiat Oncol Biol Phys. 1998;41(5):989–95.

    Article  CAS  PubMed  Google Scholar 

  155. Chen W. Clinical applications of PET in brain tumors. J Nucl Med Off Pub Soc Nucl Med. 2007;48(9):1468–81.

    Google Scholar 

  156. Lee IH, et al. Association of 11C-methionine PET uptake with site of failure after concurrent temozolomide and radiation for primary glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2009;73(2):479–85.

    Article  CAS  PubMed  Google Scholar 

  157. Weber DC, et al. Recurrence pattern after [(18)F]fluoroethyltyrosine-positron emission tomography-guided radiotherapy for high-grade glioma: a prospective study. Radiother Oncol J Eur Soc Therapeutic Radiol Oncol. 2009;93(3):586–92.

    Article  Google Scholar 

  158. Piroth MD, et al. Integrated boost IMRT with FET-PET-adapted local dose escalation in glioblastomas. Results of a prospective phase II study. Strahlentherapie und Onkologie Organ der Deutschen Rontgengesellschaft … [et al]. 2012;188(4):334–9.

    Google Scholar 

  159. Pauleit D, et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain J Neurol. 2005;128(Pt 3):678–87.

    Article  Google Scholar 

  160. Niyazi M, et al. FET-PET for malignant glioma treatment planning. Radiother Oncol J Eur Soc Therapeutic Radiol Oncol. 2011;99(1):44–8.

    Article  Google Scholar 

  161. Astner ST, et al. Effect of 11C-methionine-positron emission tomography on gross tumor volume delineation in stereotactic radiotherapy of skull base meningiomas. Int J Radiat Oncol Biol Phys. 2008;72(4):1161–7.

    Article  PubMed  Google Scholar 

  162. Grosu AL, et al. L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63(1):64–74.

    Article  CAS  PubMed  Google Scholar 

  163. Fueger BJ, et al. Correlation of 6-18F-fluoro-L-dopa PET uptake with proliferation and tumor grade in newly diagnosed and recurrent gliomas. J Nucl Med Off Pub Soc Nucl Med. 2010;51(10):1532–8.

    Google Scholar 

  164. Pafundi DH, et al. Biopsy validation of 18F-DOPA PET and biodistribution in gliomas for neurosurgical planning and radiotherapy target delineation: results of a prospective pilot study. Neuro Oncol. 2013;15(8):1058–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Diksic M, et al. A new method to measure brain serotonin synthesis in vivo. I. Theory and basic data for a biological model. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 1990;10(1):1–12.

    Article  CAS  Google Scholar 

  166. Chugani DC, et al. Imaging epileptogenic tubers in children with tuberous sclerosis complex using alpha-[11C]methyl-L-tryptophan positron emission tomography. Ann Neurol. 1998;44(6):858–66.

    Article  CAS  PubMed  Google Scholar 

  167. Chugani DC, Muzik O. Alpha[C-11]methyl-L-tryptophan PET maps brain serotonin synthesis and kynurenine pathway metabolism. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2000;20(1):2–9.

    Article  CAS  Google Scholar 

  168. Juhasz C, et al. In vivo uptake and metabolism of alpha-[11C]methyl-L-tryptophan in human brain tumors. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2006;26(3):345–57.

    Article  CAS  Google Scholar 

  169. Batista CE, et al. Imaging correlates of differential expression of indoleamine 2,3-dioxygenase in human brain tumors. Mol Imaging Biol Off Pub Acad Mol Imaging. 2009;11(6):460–6.

    Article  Google Scholar 

  170. Adams S, et al. The kynurenine pathway in brain tumor pathogenesis. Cancer Res. 2012;72(22):5649–57.

    Article  CAS  PubMed  Google Scholar 

  171. Waggoner SE. Cervical cancer. Lancet. 2003;361(9376):2217–25.

    Article  PubMed  Google Scholar 

  172. Amit A, et al. PET/CT in gynecologic cancer: present applications and future prospects – a clinician’s perspective. Obstet Gynecol Clin North Am. 2011;38(1):1–21, vii.

    Article  PubMed  Google Scholar 

  173. Yen TC, et al. Standardized uptake value in para-aortic lymph nodes is a significant prognostic factor in patients with primary advanced squamous cervical cancer. Eur J Nucl Med Mol Imaging. 2008;35(3):493–501.

    Article  PubMed  Google Scholar 

  174. Chung HH, et al. Preoperative [18F]FDG PET/CT maximum standardized uptake value predicts recurrence of uterine cervical cancer. Eur J Nucl Med Mol Imaging. 2010;37(8):1467–73.

    Article  PubMed  Google Scholar 

  175. Kidd EA, et al. The standardized uptake value for F-18 fluorodeoxyglucose is a sensitive predictive biomarker for cervical cancer treatment response and survival. Cancer. 2007;110(8):1738–44.

    Article  PubMed  Google Scholar 

  176. Xue F, et al. F-18 fluorodeoxyglucose uptake in primary cervical cancer as an indicator of prognosis after radiation therapy. Gynecol Oncol. 2006;101(1):147–51.

    Article  CAS  PubMed  Google Scholar 

  177. Lukka H, et al. Concurrent cisplatin-based chemotherapy plus radiotherapy for cervical cancer – a meta-analysis. Clin Oncol. 2002;14(3):203–12.

    Article  CAS  Google Scholar 

  178. Keys HM, et al. Radiation therapy with and without extrafascial hysterectomy for bulky stage IB cervical carcinoma: a randomized trial of the Gynecologic Oncology Group. Gynecol Oncol. 2003;89(3):343–53.

    Article  PubMed  Google Scholar 

  179. Portelance L, et al. Intensity-modulated radiation therapy (IMRT) reduces small bowel, rectum, and bladder doses in patients with cervical cancer receiving pelvic and para-aortic irradiation. Int J Radiat Oncol Biol Phys. 2001;51(1):261–6.

    Article  CAS  PubMed  Google Scholar 

  180. Wolfson AH. Magnetic resonance imaging and positron-emission tomography imaging in the 21st century as tools for the evaluation and management of patients with invasive cervical carcinoma. Semin Radiat Oncol. 2006;16(3):186–91.

    Article  PubMed  Google Scholar 

  181. Vandecasteele K, et al. Intensity-modulated arc therapy with simultaneous integrated boost in the treatment of primary irresectable cervical cancer. Treatment planning, quality control, and clinical implementation. Strahlentherapie und Onkologie Organ der Deutschen Rontgengesellschaft … [et al]. 2009;185(12):799–807.

    Google Scholar 

  182. Mitchell DG, et al. Early invasive cervical cancer: tumor delineation by magnetic resonance imaging, computed tomography, and clinical examination, verified by pathologic results, in the ACRIN 6651/GOG 183 Intergroup Study. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24(36):5687–94.

    Article  Google Scholar 

  183. Vincens E, et al. Accuracy of magnetic resonance imaging in predicting residual disease in patients treated for stage IB2/II cervical carcinoma with chemoradiation therapy: correlation of radiologic findings with surgicopathologic results. Cancer. 2008;113(8):2158–65.

    Article  PubMed  Google Scholar 

  184. Gupta T, Beriwal S. PET/CT-guided radiation therapy planning: from present to the future. Indian J Cancer. 2010;47(2):126–33.

    Article  CAS  PubMed  Google Scholar 

  185. Grigsby PW, et al. Posttherapy [18F] fluorodeoxyglucose positron emission tomography in carcinoma of the cervix: response and outcome. J Clin Oncol Off J Am Soc Clin Oncol. 2004;22(11):2167–71.

    Article  Google Scholar 

  186. Bjurberg M, et al. Prediction of patient outcome with 2-deoxy-2-[18F]fluoro-D-glucose-positron emission tomography early during radiotherapy for locally advanced cervical cancer. Int J Gynecol Cancer Off J Int Gynecol Cancer Soc. 2009;19(9):1600–5.

    Article  Google Scholar 

  187. Zimny M, Siggelkow W. Positron emission tomography scanning in gynecologic and breast cancers. Curr Opin Obstet Gynecol. 2003;15(1):69–75.

    Article  PubMed  Google Scholar 

  188. Fulham MJ, et al. The impact of PET-CT in suspected recurrent ovarian cancer: A prospective multi-centre study as part of the Australian PET Data Collection Project. Gynecol Oncol. 2009;112(3):462–8.

    Article  CAS  PubMed  Google Scholar 

  189. Tagliabue L. The emerging role of FDG PET/CT in rectal cancer management: is it time to use the technique for early prognostication? Eur J Nucl Med Mol Imaging. 2013;40(5):652–6.

    Article  PubMed  Google Scholar 

  190. Sauer R, et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med. 2004;351(17):1731–40.

    Article  CAS  PubMed  Google Scholar 

  191. Bosset JF, et al. Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med. 2006;355(11):1114–23.

    Article  CAS  PubMed  Google Scholar 

  192. Ortholan C, et al. Role of radiotherapy with surgery for T3 and resectable T4 rectal cancer: evidence from randomized trials. Dis Colon Rectum. 2006;49(3):302–10.

    Article  PubMed  Google Scholar 

  193. Capirci C, et al. Prognostic value of pathologic complete response after neoadjuvant therapy in locally advanced rectal cancer: long-term analysis of 566 ypCR patients. Int J Radiat Oncol Biol Phys. 2008;72(1):99–107.

    Article  PubMed  Google Scholar 

  194. Passoni P, et al. Feasibility of an adaptive strategy in preoperative radiochemotherapy for rectal cancer with image-guided tomotherapy: boosting the dose to the shrinking tumor. Int J Radiat Oncol Biol Phys. 2013;87(1):67–72.

    Article  PubMed  Google Scholar 

  195. Cohade C, et al. Direct comparison of (18)F-FDG PET and PET/CT in patients with colorectal carcinoma. J Nucl Med Off Pub Soc Nucl Med. 2003;44(11):1797–803.

    Google Scholar 

  196. Kinkel K, et al. Detection of hepatic metastases from cancers of the gastrointestinal tract by using noninvasive imaging methods (US, CT, MR imaging, PET): a meta-analysis. Radiology. 2002;224(3):748–56.

    Article  PubMed  Google Scholar 

  197. Selzner M, et al. Does the novel PET/CT imaging modality impact on the treatment of patients with metastatic colorectal cancer of the liver? Ann Surg. 2004;240(6):1027–34; discussion 1035–6.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Seale MK, et al. Hepatobiliary-specific MR contrast agents: role in imaging the liver and biliary tree. Radiographics Rev Pub Radiol Soc North Am. 2009;29(6):1725–48.

    Google Scholar 

  199. Patel DA, et al. Impact of integrated PET/CT on variability of target volume delineation in rectal cancer. Technol Cancer Res Treat. 2007;6(1):31–6.

    Article  PubMed  Google Scholar 

  200. Paskeviciute B, et al. Impact of (18)F-FDG-PET/CT on staging and irradiation of patients with locally advanced rectal cancer. Strahlentherapie und Onkologie Organ der Deutschen Rontgengesellschaft … [et al]. 2009;185(4):260–5.

    Google Scholar 

  201. Braendengen M, et al. Delineation of gross tumor volume (GTV) for radiation treatment planning of locally advanced rectal cancer using information from MRI or FDG-PET/CT: a prospective study. Int J Radiat Oncol Biol Phys. 2011;81(4):e439–45.

    Article  PubMed  Google Scholar 

  202. Janssen MH, et al. Evaluation of early metabolic responses in rectal cancer during combined radiochemotherapy or radiotherapy alone: sequential FDG-PET-CT findings. Radiother Oncol J Eur Soc Therapeutic Radiol Oncol. 2010;94(2):151–5.

    Article  Google Scholar 

  203. Janssen MH, et al. Accurate prediction of pathological rectal tumor response after two weeks of preoperative radiochemotherapy using (18)F-fluorodeoxyglucose-positron emission tomography-computed tomography imaging. Int J Radiat Oncol Biol Phys. 2010;77(2):392–9.

    Article  PubMed  Google Scholar 

  204. Petit SF, et al. [(1)(8)F]fluorodeoxyglucose uptake patterns in lung before radiotherapy identify areas more susceptible to radiation-induced lung toxicity in non-small-cell lung cancer patients. Int J Radiat Oncol Biol Phys. 2011;81(3):698–705.

    Article  PubMed  Google Scholar 

  205. Lambin P, et al. The ESTRO Breur Lecture. From population to voxel-based radiotherapy: exploiting intra-tumour and intra-organ heterogeneity for advanced treatment of non-small cell lung cancer. Radiother Oncol J Eur Soc Therapeutic Radiol Oncol. 2009;96(2):145–52.

    Article  Google Scholar 

  206. van Stiphout RG, et al. Nomogram predicting response after chemoradiotherapy in rectal cancer using sequential PETCT imaging: a multicentric prospective study with external validation. Radiother Oncol. 2014;113(2):215–22.

    Google Scholar 

  207. van den Bogaard J, et al. Residual metabolic tumor activity after chemo-radiotherapy is mainly located in initially high FDG uptake areas in rectal cancer. Radiother Oncol J Eur Soc Therapeutic Radiol Oncol. 2011;99(2):137–41.

    Article  Google Scholar 

  208. Murcia Durendez MJ, et al. The value of 18F-FDG PET/CT for assessing the response to neoadjuvant therapy in locally advanced rectal cancer. Eur J Nucl Med Mol Imaging. 2013;40(1):91–7.

    Article  CAS  PubMed  Google Scholar 

  209. Lee SJ, et al. Clinical implications of initial FDG-PET/CT in locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy. Cancer Chemother Pharmacol. 2013;71(5):1201–7.

    Article  CAS  PubMed  Google Scholar 

  210. Calvo FA, et al. 18F-FDG positron emission tomography staging and restaging in rectal cancer treated with preoperative chemoradiation. Int J Radiat Oncol Biol Phys. 2004;58(2):528–35.

    Article  PubMed  Google Scholar 

  211. Calvo FA, et al. (18)F-FDG PET/CT-based treatment response evaluation in locally advanced rectal cancer: a prospective validation of long-term outcomes. Eur J Nucl Med Mol Imaging. 2013;40(5):657–67.

    Article  CAS  PubMed  Google Scholar 

  212. Denecke T, et al. Comparison of CT, MRI and FDG-PET in response prediction of patients with locally advanced rectal cancer after multimodal preoperative therapy: is there a benefit in using functional imaging? Eur Radiol. 2005;15(8):1658–66.

    Article  CAS  PubMed  Google Scholar 

  213. Roels S, et al. Biological image-guided radiotherapy in rectal cancer: challenges and pitfalls. Int J Radiat Oncol Biol Phys. 2009;75(3):782–90.

    Article  PubMed  Google Scholar 

  214. Farsad M, Schwarzenbock S, Krause BJ. PET/CT and choline: diagnosis and staging. Q J Nucl Med Mol Imaging Off Pub Italian Assoc Nucl Med. 2012;56(4):343–53.

    CAS  Google Scholar 

  215. Pinkawa M, et al. Dose-escalation using intensity-modulated radiotherapy for prostate cancer – evaluation of the dose distribution with and without 18F-choline PET-CT detected simultaneous integrated boost. Radiother Oncol J Eur Soc Therapeutic Radiol Oncol. 2009;93(2):213–9.

    Article  CAS  Google Scholar 

  216. Pinkawa M, et al. Dose-escalation using intensity-modulated radiotherapy for prostate cancer – evaluation of quality of life with and without (18)F-choline PET-CT detected simultaneous integrated boost. Radiat Oncol. 2012;7:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Park H, et al. Validation of automatic target volume definition as demonstrated for 11C-choline PET/CT of human prostate cancer using multi-modality fusion techniques. Acad Radiol. 2010;17(5):614–23.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Zakian KL, et al. Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology. 2005;234(3):804–14.

    Article  PubMed  Google Scholar 

  219. Ikonen S, et al. Magnetic resonance imaging of clinically localized prostatic cancer. J Urol. 1998;159(3):915–9.

    Article  CAS  PubMed  Google Scholar 

  220. Picchio M, et al. Imaging biomarkers in prostate cancer: role of PET/CT and MRI. Eur J Nucl Med Mol Imaging. 2015;42(4):644–55.

    Article  CAS  PubMed  Google Scholar 

  221. Schiavina R, et al. 11C-choline positron emission tomography/computerized tomography for preoperative lymph-node staging in intermediate-risk and high-risk prostate cancer: comparison with clinical staging nomograms. Eur Urol. 2008;54(2):392–401.

    Article  PubMed  Google Scholar 

  222. Hacker A, et al. Detection of pelvic lymph node metastases in patients with clinically localized prostate cancer: comparison of [18F]fluorocholine positron emission tomography-computerized tomography and laparoscopic radioisotope guided sentinel lymph node dissection. J Urol. 2006;176(5):2014–8; discussion 2018–9.

    Article  PubMed  Google Scholar 

  223. Schwarzenbock S, Souvatzoglou M, Krause BJ. Choline PET and PET/CT in primary diagnosis and staging of prostate cancer. Theranostics. 2012;2(3):318–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Heidenreich A, et al. EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol. 2014;65(2):467–79.

    Article  CAS  PubMed  Google Scholar 

  225. De Bari B, et al. The “PROCAINA (PROstate CAncer INdication Attitudes) Project” (Part II) – a survey among Italian radiation oncologists on radical radiotherapy in prostate cancer. Radiol Med. 2013;118(7):1220–39.

    Article  PubMed  Google Scholar 

  226. Alongi F, et al. The PROCAINA (PROstate CAncer INdication Attitudes) Project (Part I): a survey among Italian radiation oncologists on postoperative radiotherapy in prostate cancer. Radiol Med. 2013;118(4):660–78.

    Article  CAS  PubMed  Google Scholar 

  227. Picchio M, Castellucci P. Clinical indications of C-choline PET/CT in prostate cancer patients with biochemical relapse. Theranostics. 2012;2(3):313–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Giovacchini G, et al. [C]Choline PET/CT predicts survival in hormone-naive prostate cancer patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2015;42(6):877–84.

    Article  CAS  PubMed  Google Scholar 

  229. Suardi N, et al. Open prostatectomy and the evolution of HoLEP in the management of benign prostatic hyperplasia. Minerva urologica e nefrologica Italian J Urol Nephrol. 2009;61(3):301–8.

    CAS  Google Scholar 

  230. Incerti E, et al. Radiation Treatment of Lymph Node Recurrence from Prostate Cancer: Is 11C-Choline PET/CT Predictive of Survival Outcomes? J Nucl Med. 2015;56(12):1836–42.

    Google Scholar 

  231. Souvatzoglou M, et al. Influence of (11)C-choline PET/CT on the treatment planning for salvage radiation therapy in patients with biochemical recurrence of prostate cancer. Radiother Oncol J Eur Soc Therapeutic Radiol Oncol. 2011;99(2):193–200.

    Article  Google Scholar 

  232. Wurschmidt F, et al. [18F]fluoroethylcholine-PET/CT imaging for radiation treatment planning of recurrent and primary prostate cancer with dose escalation to PET/CT-positive lymph nodes. Radiat Oncol. 2011;6:44.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Casamassima F, et al. Efficacy of eradicative radiotherapy for limited nodal metastases detected with choline PET scan in prostate cancer patients. Tumori. 2011;97(1):49–55.

    CAS  PubMed  Google Scholar 

  234. Stephenson AJ, et al. Predicting the outcome of salvage radiation therapy for recurrent prostate cancer after radical prostatectomy. J Clin Oncol Off J Am Soc Clin Oncol. 2007;25(15):2035–41.

    Article  Google Scholar 

  235. Decaestecker K, et al. Surveillance or metastasis-directed Therapy for OligoMetastatic Prostate cancer recurrence (STOMP): study protocol for a randomized phase II trial. BMC Cancer. 2014;14:671.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Ost P, et al. Metastasis-directed therapy of regional and distant recurrences after curative treatment of prostate cancer: a systematic review of the literature. Eur Urol. 2015;67(5):852–63.

    Article  PubMed  Google Scholar 

  237. Gandaglia G, et al. Impact of the site of metastases on survival in patients with metastatic prostate cancer. Eur Urol. 2014;68(2):325–34.

    Article  PubMed  Google Scholar 

  238. Fodor A, et al. Toxicity and efficacy of salvage 11C-Choline PET/CT-guided radiation therapy in patients with prostate cancer lymph nodal recurrence. BJU Int. 2016.

    Google Scholar 

  239. Husarik DB, et al. Evaluation of [(18)F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35(2):253–63.

    Article  PubMed  Google Scholar 

  240. Soyka JD, et al. Clinical impact of 18F-choline PET/CT in patients with recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2012;39(6):936–43.

    Article  CAS  PubMed  Google Scholar 

  241. Vees H, et al. 18F-choline and/or 11C-acetate positron emission tomography: detection of residual or progressive subclinical disease at very low prostate-specific antigen values (<1 ng/mL) after radical prostatectomy. BJU Int. 2007;99(6):1415–20.

    Article  CAS  PubMed  Google Scholar 

  242. Evangelista L, et al. Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur Urol. 2013;63(6):1040–8.

    Article  PubMed  Google Scholar 

  243. Seppala J, et al. Carbon-11 acetate PET/CT based dose escalated IMRT in prostate cancer. Radiother Oncol J Eur Soc Therapeutic Radiol Oncol. 2009;93(2):234–40.

    Article  CAS  Google Scholar 

  244. Hockel M, Vaupel P. Biological consequences of tumor hypoxia. Semin Oncol. 2001;28(2 Suppl 8):36–41.

    Article  CAS  PubMed  Google Scholar 

  245. Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001;93(4):266–76.

    Article  CAS  PubMed  Google Scholar 

  246. Busk M, Horsman MR. Relevance of hypoxia in radiation oncology: pathophysiology, tumor biology and implications for treatment. Q J Nucl Med Mol Imaging Off Pub Italian Assoc Nucl Med. 2013;57(3):219–34.

    CAS  Google Scholar 

  247. Sovik A, et al. Radiotherapy adapted to spatial and temporal variability in tumor hypoxia. Int J Radiat Oncol Biol Phys. 2007;68(5):1496–504.

    Article  PubMed  Google Scholar 

  248. Brizel DM, et al. Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys. 1997;38(2):285–9.

    Article  CAS  PubMed  Google Scholar 

  249. Moon EJ, et al. The potential role of intrinsic hypoxia markers as prognostic variables in cancer. Antioxid Redox Signal. 2007;9(8):1237–94.

    Article  CAS  PubMed  Google Scholar 

  250. Langen KJ, Eschmann SM. Correlative imaging of hypoxia and angiogenesis in oncology. J Nucl Med Off Pub Soc Nucl Med. 2008;49(4):515–6.

    Google Scholar 

  251. Olive PL, Vikse C, Trotter MJ. Measurement of oxygen diffusion distance in tumor cubes using a fluorescent hypoxia probe. Int J Radiat Oncol Biol Phys. 1992;22(3):397–402.

    Article  CAS  PubMed  Google Scholar 

  252. Olive PL, Aquino-Parsons C. Measurement of tumor hypoxia using single-cell methods. Semin Radiat Oncol. 2004;14(3):241–8.

    Article  PubMed  Google Scholar 

  253. Maftei CA, et al. Comparison of (immuno-)fluorescence data with serial [(1)(8)F]Fmiso PET/CT imaging for assessment of chronic and acute hypoxia in head and neck cancers. Radiother Oncol J Eur Soc Therapeutic Radiol Oncol. 2011;99(3):412–7.

    Article  CAS  Google Scholar 

  254. Eschmann SM, et al. Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med Off Pub Soc Nucl Med. 2005;46(2):253–60.

    Google Scholar 

  255. Eschmann SM, et al. Hypoxia-imaging with (18)F-Misonidazole and PET: changes of kinetics during radiotherapy of head-and-neck cancer. Radiother Oncol J Eur Soc Therapeutic Radiol Oncol. 2007;83(3):406–10.

    Article  CAS  Google Scholar 

  256. Thorwarth D, et al. A kinetic model for dynamic [18F]-Fmiso PET data to analyse tumour hypoxia. Phys Med Biol. 2005;50(10):2209–24.

    Article  PubMed  Google Scholar 

  257. Chitneni SK, et al. Molecular imaging of hypoxia. J Nucl Med Off Pub Soc Nucl Med. 2011;52(2):165–8.

    CAS  Google Scholar 

  258. Piert M, et al. Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J Nucl Med Off Pub Soc Nucl Med. 2005;46(1):106–13.

    Google Scholar 

  259. Vavere AL, Lewis JS. Examining the relationship between Cu-ATSM hypoxia selectivity and fatty acid synthase expression in human prostate cancer cell lines. Nucl Med Biol. 2008;35(3):273–9.

    Article  CAS  PubMed  Google Scholar 

  260. Holland JP, Lewis JS, Dehdashti F. Assessing tumor hypoxia by positron emission tomography with Cu-ATSM. Q J Nucl Med Mol Imaging Off Pub Italian Assoc Nucl Med. 2009;53(2):193–200.

    CAS  Google Scholar 

  261. Valtorta S, et al. Comparison of 18F-fluoroazomycin-arabinofuranoside and 64Cu-diacetyl-bis(N4-methylthiosemicarbazone) in preclinical models of cancer. J Nucl Med Off Pub Soc Nucl Med. 2013;54(7):1106–12.

    CAS  Google Scholar 

  262. Lewis JS, et al. Evaluation of 64Cu-ATSM in vitro and in vivo in a hypoxic tumor model. J Nucl Med Off Pub Soc Nucl Med. 1999;40(1):177–83.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Picchio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Picchio, M., Incerti, E., Di Muzio, N. (2017). Role of PET/CT in Radiotherapy Treatment Planning. In: Khalil, M. (eds) Basic Science of PET Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-40070-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40070-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40068-6

  • Online ISBN: 978-3-319-40070-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics