Skip to main content

Figure-of-Merits for Quantifying Triboelectric Nanogenerators

  • Chapter
  • First Online:
Book cover Triboelectric Nanogenerators

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Four basic working modes of triboelectric nanogenerator have been demonstrated, each of which has different designs to accommodate the corresponding mechanical triggering conditions. A common standard is thus required to quantify the performance of the triboelectric nanogenerators so that their outputs can be compared and evaluated. In this chapter, figure-of-merits for defining the performance of a triboelectric nanogenerator has been developed, which is composed of a structural figure-of-merit related to the structure and a material figure of merit that is the square of the surface charge density. The structural figure-of-merit is derived and simulated to compare the triboelectric nanogenerators with different configurations. A standard method is introduced to quantify the material figure-of-merit for a general surface. This will establish the standards for developing TENGs towards practical applications and industrialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Zhu, C. Pan, W. Guo, C.-Y. Chen, Y. Zhou, R. Yu, Z.L. Wang, Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 12(9), 4960–4965 (2012)

    Article  Google Scholar 

  2. X.S. Meng, G. Zhu, Z.L. Wang, Robust thin-film generator based on segmented contact-electrification for harvesting wind energy. ACS Appl. Mater. Interfaces 6(11), 8011–8016 (2014)

    Article  Google Scholar 

  3. G. Zhu, J. Chen, Y. Liu, P. Bai, Y.S. Zhou, Q. Jing, C. Pan, Z.L. Wang, Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 13(5), 2282–2289 (2013)

    Article  Google Scholar 

  4. S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu, Z.L. Wang, Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 13(5), 2226–2233 (2013)

    Article  Google Scholar 

  5. G. Zhu, J. Chen, T. Zhang, Q. Jing, Z.L. Wang, Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 5, 3426 (2014)

    Google Scholar 

  6. Y. Yang, H. Zhang, J. Chen, Q. Jing, Y.S. Zhou, X. Wen, Z.L. Wang, Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 7(8), 7342–7351 (2013)

    Article  Google Scholar 

  7. S. Wang, S. Niu, J. Yang, L. Lin, Z.L. Wang, Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator. ACS Nano 8(12), 12004–12013 (2014)

    Article  Google Scholar 

  8. F.L. Curzon, B. Ahlborn, Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 43(1), 22–24 (1975)

    Article  Google Scholar 

  9. N. Giordano, College Physics: Reasoning and Relationships (Cengage Learning, 2009)

    Google Scholar 

  10. G. Sebald, E. Lefeuvre, D. Guyomar, Pyroelectric energy conversion: optimization principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(3), 538–551 (2008)

    Article  Google Scholar 

  11. S.P. Alpay, J. Mantese, S. Trolier-McKinstry, Q. Zhang, R.W. Whatmore, Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion. MRS Bull. 39(12), 1099–1111 (2014)

    Article  Google Scholar 

  12. T.M. Tritt, M.A. Subramanian, Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull. 31(03), 188–198 (2006)

    Article  Google Scholar 

  13. D.M. Rowe, CRC Handbook of Thermoelectrics (Taylor & Francis, 2010)

    Google Scholar 

  14. M.A. Green, Solar cells: Operating Principles, Technology, and System Applications (Prentice-Hall, 1982)

    Google Scholar 

  15. J. Nelson, The Physics of Solar Cells. (Imperial College Press, 2003)

    Google Scholar 

  16. Y. Zi, S. Niu, J. Wang, Z. Wen, W. Tang, Z.L. Wang, Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 6, 8376 (2015)

    Google Scholar 

  17. S. Niu, Y. Liu, S. Wang, L. Lin, Y.S. Zhou, Y. Hu, Z.L. Wang, Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 24(22), 3332–3340 (2014)

    Article  Google Scholar 

  18. S. Niu, Y. Liu, X. Chen, S. Wang, Y.S. Zhou, L. Lin, Y. Xie, Z.L. Wang, Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy 12, 760–774 (2015)

    Google Scholar 

  19. Y. Zi, J. Wang, S. Wang, S. Li, Z. Wen, H. Guo, Z.L. Wang, Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 7, 10987 (2016)

    Google Scholar 

  20. S. Niu, Y. Liu, S. Wang, L. Lin, Y.S. Zhou, Y. Hu, Z.L. Wang, Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 25(43), 6184–6193 (2013)

    Article  Google Scholar 

  21. G. Cheng, Z.-H. Lin, L. Lin, Z.-L. Du, Z.L. Wang, Pulsed nanogenerator with huge instantaneous output power density. ACS Nano 7(8), 7383–7391 (2013)

    Article  Google Scholar 

  22. Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013)

    Article  Google Scholar 

  23. Z.L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 176, 447–458 (2014)

    Article  Google Scholar 

  24. S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou, Y. Hu, Z.L. Wang, Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6(12), 3576–3583 (2013)

    Article  Google Scholar 

  25. Y. Li, Y.H. Li, Q.X. Li, Y.Y. Zi, Computation of electrostatic forces with edge effects for nonparallel comb-actuators. J Tsinghua Univ (Sci & Tech) 43(8), 1024–1026, 1030 (2003)

    Google Scholar 

  26. H.T. Baytekin, A.Z. Patashinski, M. Branicki, B. Baytekin, S. Soh, B.A. Grzybowski, The mosaic of surface charge in contact electrification. Science 333(6040), 308–312 (2011)

    Article  Google Scholar 

  27. T.A.L. Burgo, T.R.D. Ducati, K.R. Francisco, K.J. Clinckspoor, F. Galembeck, S.E. Galembeck, Triboelectricity: macroscopic charge patterns formed by self-arraying ions on polymer surfaces. Langmuir 28(19), 7407–7416 (2012)

    Article  Google Scholar 

  28. W. Tang, T. Jiang, F.R. Fan, A.F. Yu, C. Zhang, X. Cao, Z.L. Wang, Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6 %. Adv. Funct. Mater. 25(24), 3718–3725 (2015)

    Article  Google Scholar 

  29. R.C. Chiechi, E.A. Weiss, M.D. Dickey, G.M. Whitesides, Eutectic Gallium-Indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers. Angew. Chem. Int. Ed. 47(1), 142–144 (2008)

    Article  Google Scholar 

  30. M.D. Dickey, R.C. Chiechi, R.J. Larsen, E.A. Weiss, D.A. Weitz, G.M. Whitesides, Eutectic Gallium-Indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 18(7), 1097–1104 (2008)

    Article  Google Scholar 

  31. Q. Xu, N. Oudalov, Q. Guo, H.M. Jaeger, E. Brown, Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium. Phys. Fluids (1994-present) 24(6), 063101 (2012)

    Google Scholar 

  32. L. Tingyi, P. Sen, K. Chang-Jin, Characterization of liquid-metal Galinstan for droplet applications. In 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, Wanchai, Hong Kong, 2010), pp. 560–563

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Lin Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, Z.L., Lin, L., Chen, J., Niu, S., Zi, Y. (2016). Figure-of-Merits for Quantifying Triboelectric Nanogenerators. In: Triboelectric Nanogenerators. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-40039-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40039-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40038-9

  • Online ISBN: 978-3-319-40039-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics