Skip to main content

Harvesting Large-Scale Blue Energy

  • Chapter
  • First Online:
Triboelectric Nanogenerators

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Harvesting water wave energy is a great challenge to traditional electromagnetic generator (EMG) mainly due to its low frequency, large area of distribution, random in amplitude and high cost. This chapter presents how TENG can be an effective technology for harvesting water wave energy by using triboelectric effect and electrostatic induction effect. The high output voltage of TENG makes the harvested energy being effectively useful. A network design is also presented for harvesting ocean energy in general toward the dream of blue energy. The high performance of TENG at low frequency is an unreplaceable and unbeatable advantage in comparison to EMG, making the two technologies complement each other for different applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z.L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors—principles, problems and perspectives. Farad. Discuss. 176, 447–458 (2014)

    Article  Google Scholar 

  2. Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013)

    Article  Google Scholar 

  3. Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenertors as new energy technology and self-powered sensors. Energy Environ. Sci. 8, 2250–2282 (2015)

    Article  Google Scholar 

  4. S. Wang, L. Lin, Z.L. Wang, Triboelectric nanogenerators as self-powered active sensors. Nano Energy 11, 436–462 (2015)

    Article  Google Scholar 

  5. G. Zhu, B. Peng, J. Chen, Q. Jing, Z.L. Wang, Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 14, 126–138 (2015)

    Article  Google Scholar 

  6. Z.-H. Lin, G. Cheng, S. Lee, K.C. Pradel, Z.L. Wang, Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process. Adv. Mater. 26(27), 4690–4696 (2014)

    Article  Google Scholar 

  7. Z.-H. Lin, G. Cheng, L. Lin, S. Lee, Z.L. Wang, Water–solid surface contact electrification and its use for harvesting liquid-wave energy. Angew. Chem. Int. Ed. 125(48), 12777–12781 (2013)

    Google Scholar 

  8. Z.-H. Lin, G. Cheng, W. Wu, K.C. Pradel, Z.L. Wang, Dual-mode triboelectric nanogenerator for harvesting water energy and as a self-powered ethanol nanosensor. ACS Nano 8(6), 6440–6448 (2014)

    Article  Google Scholar 

  9. G. Zhu, Y. Su, P. Bai, J. Chen, Q. Jing, W. Yang, Z.L. Wang, Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 8(6), 6031–6037 (2014)

    Article  Google Scholar 

  10. J. Chen, J. Yang, Z. Li, X. Fan, Y. Zi, Q. Jing, H. Guo, Z. Wen, K.C. Pradel, S. Niu, Z.L. Wang, Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. ACS Nano 9(3), 3324–3331 (2015)

    Article  Google Scholar 

  11. W. Yang, J. Chen, G. Zhu, J. Yang, P. Bai, Y. Su, Q. Jing, X. Cao, Z.L. Wang, Harvesting energy from the natural vibration of human walking. ACS Nano 7(12), 11317–11324 (2013)

    Article  Google Scholar 

  12. W. Yang, J. Chen, Q. Jing, J. Yang, X. Wen, Y. Su, G. Zhu, P. Bai, Z.L. Wang, 3D Stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 24(26), 4090–4096 (2014)

    Article  Google Scholar 

  13. J. Yang, J. Chen, Y. Liu, W. Yang, Y. Su, Z.L. Wang, Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 8(3), 2649–2657 (2014)

    Article  Google Scholar 

  14. Y. Su, G. Zhu, W. Yang, J. Yang, J. Chen, Q. Jing, Z. Wu, Y. Jiang, Z.L. Wang, Triboelectric sensor for self-powered tracking of object motion inside tubing. ACS Nano 8(4), 3843–3850 (2014)

    Article  Google Scholar 

  15. J. Chen, G. Zhu, J. Yang, Q. Jing, P. Bai, W. Yang, X. Qi, Y. Su, Z.L. Wang, Personalized keystroke dynamics for self-powered human–machine interfacing. ACS Nano 9(1), 105–116 (2015)

    Article  Google Scholar 

  16. J. Yang, J. Chen, Y. Su, Q. Jing, Z. Li, F. Yi, X. Wen, Z. Wang, Z.L. Wang, Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 27(8), 1316–1326 (2015)

    Article  Google Scholar 

  17. G. Zhu, Y.S. Zhou, P. Bai, X.S. Meng, Q. Jing, J. Chen, Z.L. Wang, A shape-adaptive thin-film-based approach for 50 % high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 26(23), 3788–3796 (2014)

    Article  Google Scholar 

  18. Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, Y. Su, Z. Wu, Z.L. Wang, Multi-layered disk triboelectric nanogenerator for harvesting hydropower. Nano Energy 6, 129–136 (2014)

    Article  Google Scholar 

  19. G. Cheng, Z.-H. Lin, Z.-L. Du, Z.L. Wang, Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator. ACS Nano 8(2), 1932–1939 (2014)

    Article  Google Scholar 

  20. X. Wang, S. Niu, Y. Yin, F. Yi, Z. You, Z.L. Wang, Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv. Energy Mater. 5, 1501467 (2015)

    Article  Google Scholar 

  21. G. Zhu, W. Yang, T. Zhang, Q. Jing, J. Chen, Y.S. Zhou, P. Bai, Z.L. Wang, Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. 14(6), 3208–3213 (2014)

    Article  Google Scholar 

  22. G. Zhu, J. Chen, T. Zhang, Q. Jing, Z.L. Wang, Radial-arrayed rotary electrification for high performance triboelectric generator. Nat Commun. 5, 3426 (2014)

    Google Scholar 

  23. S. Wang, L. Lin, Z.L. Wang, Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 12(12), 6339–6346 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Lin Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, Z.L., Lin, L., Chen, J., Niu, S., Zi, Y. (2016). Harvesting Large-Scale Blue Energy. In: Triboelectric Nanogenerators. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-40039-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40039-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40038-9

  • Online ISBN: 978-3-319-40039-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics