Skip to main content

Microfluidics Overview

  • Chapter
  • First Online:
Microfluidics for Biologists

Abstract

Microelectromechanical systems and micro-fluidics are two fast emerging domains in diagnostics research. The Microsystems technology emerged as a fall out of the microelectronics industry mostly due to the obsoleteness of some of the microelectronic processes owing to integration density issues. The area was first widely explored in the mechanical and physical sensing domains and found wide interests primarily because of low overall size, high yields of production and ability to integrate with a variety of processes. The technology saw a turnaround towards chemical/biochemical sensing starting from the end of 80s as prompted by the fast molecular diagnostic requirements imposed by the gene sequencing industry fuelled by the Human Genome project. Microfluidics is mostly concerned with handling of miniscule samples of fluids of volume 10−9–10−18 L which is well suited to the handling of different expensive analytes important for diagnostics work. This technology has very prominent advantage with respect to low overall chip area and high integration density. For handling small volumes of fluid of the range indicated above various micro-channels and micro-confinements are devised using a variety of techniques in which the mixing, reacting, handling and transporting etc. take place. The main motivations of this field are powerful analytical and diagnostic techniques which have been parallel devised by chemists, biochemists and material scientists over the last couple of decades to understand the life processes for sustenance of life itself. These may include modern methods as used in chemical diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    Article  CAS  PubMed  Google Scholar 

  2. Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3(3):245–281

    Article  CAS  Google Scholar 

  3. Srinivasan V, Pamula V, Fair R (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4:30–315

    Article  CAS  Google Scholar 

  4. http://www.drdo.gov.in/drdo/data/Laser%20and%20its%20Applications

  5. Robert M, Rossier J, Bercier P, Girault H (1997) UV laser machined polymer substrates for the development of microdiagnostic systems. Anal Chem 69:2035

    Article  Google Scholar 

  6. Hellaman A, Rau K, Yoon H, Bae S, Palmer J, Philips K, Albritton N, Venugopal V (2007) Laser-induced mixing in microfluidic channels. Anal Chem 79:4484–4492

    Article  CAS  Google Scholar 

  7. Quinto-Su PA, Lai HH, Yoon HH, Sims CE, Allbritton NL, Venugopalan V (2008) Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging. Lab Chip 8(3):408–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheng J, Wei C, Hsu C, Young T (2004) Direct-write laser micromachining and universal surface modification of PMMA for device development. Sens Actuators 99:186

    Article  CAS  Google Scholar 

  9. Klank H, Kutter J, Geschke O (2002) CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip 2:242

    Article  CAS  PubMed  Google Scholar 

  10. Lippert T, Wei J, Wokaun A, Hoogen N, Nuyken O (2000) Polymers designed for laser microstructuring. Appl Surf Sci 168:270

    Article  CAS  Google Scholar 

  11. Kant R, Gupta A, Bhattacharya S (2015) Studies on CO2 laser micromachining on PMMA to fabricate microchannels for microfluidic applications. In: 5th international and 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12th–14th, 2014, IIT Guwahati, Assam, India

    Google Scholar 

  12. Johnson T, Waddell E, Kramer G, Locascio L (2001) Chemical mapping of hot-embossed and UV-laser-ablated microchannels in poly(methyl methacrylate) using carboxylate specific fluorescent probes. Applied Surface Science 181:149–159

    Google Scholar 

  13. Terasawa T (1989) 0.3 μm optical lithography using phase-shifting mask. In: Proceedings of SPIE, p 142

    Google Scholar 

  14. Lu Y (2006) A digital micro-mirror device-based system for the micro fabrication of complex, spatially patterned tissue engineering scaffolds. J Biomed Mater Res A 77:396–405

    Article  PubMed  CAS  Google Scholar 

  15. Apte P, Rizvi NH (2002) Developments in laser micro-machining techniques. J Mater Process Technol 127:206–210

    Article  Google Scholar 

  16. Kumar A, Gupta A, Kant R, Akhtar SN, Tiwari N, Ramkumar J, Bhattacharya S (2013) Optimizaton of laser machining processes for the preparation of photomasks, and its application to microsystem fabrication. J Micro/Nnolith MEMS and MOEMS 13(1):1–8

    Google Scholar 

  17. https://www.memsnet.org/mems/processes/lithography.html

  18. Whitesides G, Ostuni E, Takayama S, Jiang X, Ingber D (2001) Soft lithography in biology and biochemistry. Ann Rev Biomed Eng 33:335–373

    Article  Google Scholar 

  19. Duffy D, Mcdonald J, Schueller O, Whitesides G (1998) Rapid prototyping of microfluidic system in PDMS. Anal Chem 70:4974–4984

    Article  CAS  PubMed  Google Scholar 

  20. McDonald J, Duffy D, Anderson J, Chiu D, Wu H, Schueller O, Whitesides G (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40

    Article  CAS  PubMed  Google Scholar 

  21. Folch A, Toner M (2000) Microengineering of cellular interaction. Ann Rev Biomed Eng 2:227–256

    Article  CAS  Google Scholar 

  22. Ismagilov R, Rosmarin D, Kenis P, Chiu D, Zhang W, Stone H, Whitesides G (2001) Pressure-driven laminar flow in tangential microchannels: an elastomeric microfluidic switch. Anal Chem 73:4682–4687

    Article  CAS  PubMed  Google Scholar 

  23. Chou S, Krauss P, Renstrom P (1996) Nanoimprint lithography. J Vac Sci Technol B 14:4129

    Article  CAS  Google Scholar 

  24. Whitesides S, Whitesides G (2000) Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Anal Chem 72:3158–3164

    Article  PubMed  CAS  Google Scholar 

  25. Singh RK, Ghubade A, Basu B, Bhattacharya S (2009) A novel replicamoulding process for realizing three dimensional microchannels within soft materials. In: ICEMS

    Google Scholar 

  26. Singh RK (2014) Micro-manufacturing of 2/3 dimensional

    Google Scholar 

  27. Singh RK, Kant R, Pandey SS, Asfer M, Bhattacharya B, Panigrahi PK, Bhattacharya S (2013) Passive vibration damping using polymer pads with microchannel arrays. Microelectromech Syst 22(3):695–707

    Article  Google Scholar 

  28. Rajeev Kumar Singh AGSB (2013) Design and fabrication of 3-dimensional helical structure in polydimethysiloxane for flow control applications. Microsyst Technol, pp 1–11

    Google Scholar 

  29. Singh RK, Kant R, Singh S, Suresh E, Gupta A, Bhattacharya S (2015) A novel helical micro-valve for embedded micro-fluidic applications. Microfluid Nanofluid 19(1):19–29

    Article  CAS  Google Scholar 

  30. Singh RK, Ghubade A, Chaudhury R, Bhattacharya S (2009) Fabrication technology forbiomedical systems using non-conventional micromachining

    Google Scholar 

  31. Osborn JL, Barry L, Elain L, Peter K (2010) Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks. Lab Chip 10(20):2659–2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bhattacharya S, Jordan B, Darryl J, Gangopadhyay S (2003) A flow visualization experiment for a first course in micro-fluidics. In: Proceedings of ASEE, University of Texas at Arlington, TX

    Google Scholar 

  33. Nguyen N-T, Wu Z (2005) Micromixers—a review. J Micromech Microeng 15:R1–R16

    Article  Google Scholar 

  34. Nam-Trung N, Wu Z (2004) Micromixers—a review. J Micromech Microeng 15(2):1–16

    Google Scholar 

  35. Kant R, Singh H, Bhattacharya S Nano-scale particle etching using micro-mixer. Microfluid Nanofluid, Manuscript under review

    Google Scholar 

  36. Zhang X, Jiang XN, Sun C (1999) Micro-stereolithography of polymeric and ceramic microstructures. Sens Actuators A 77(2):149–156

    Article  CAS  Google Scholar 

  37. Richard BG, Hahn EL (1975) Coherent two-photon processes: transient and steady-state cases. Phys Rev A 11(5):1641

    Article  Google Scholar 

  38. Choudhary R, Bhakat T, Singh RK, Ghubade A, Mandal S, Ghosh A, Rammohan A, Sharma A, Bhattacharya S (2011) Bilayer staggered herringbone micro-mixers with symmetric and asymmetric. J Microfluid Nanofluid 10:271–286

    Article  Google Scholar 

  39. Smits JG (1990) Piezoelectric micropump with three valves working peristaltically. Sens Actuators A21–A23:203–206

    Article  Google Scholar 

  40. Trouchet D, Ajdari A, Tabeling P, Goulpeau J (2005) Experimental study and modeling of polydimethylsiloxane peristaltic micropumps. J Appl Phys 98:044914

    Article  CAS  Google Scholar 

  41. Stemme E, Stemme G (1993) A valveless diffuser/nozzle-based fluid. Sens Actuators 39:159–167

    Article  CAS  Google Scholar 

  42. Carrozza M, Croce N, Magnani B, Dario P (1995) A piezoelectricdriven stereolithography-fabricated micropump. J Micromech Microeng 5:177–179

    Article  Google Scholar 

  43. Böhm S, Timmer B, Olthuis W, Bergveld P (2002) A closed-loop controlled electrochemically actuated micro-dosing system. J Micromech Microeng 10:498–504

    Article  Google Scholar 

  44. Jeong O, Park S, Yang S, Pak J (2005) Fabrication of a Peristaltic PDMS micro pump. Sens Actuators 123:453–458

    Article  CAS  Google Scholar 

  45. Kant R, Singh H, Nayak M, Bhattacharya S (2013) Optimization of design and characterization of a novel micro-pumping system with peristaltic motion. Microsyst Technol 19(4):563–575

    Article  CAS  Google Scholar 

  46. Atwe A, Gupta A, Kant R, Das M, Sharma I, Bhattacharya S (2014) A novel microfluidic switch for pH control using Chitosan based hydrogels. Microsyst Technol 20(7):1373–1381

    Article  CAS  Google Scholar 

  47. Singh RK, Kumar A, Kant R, Gupta A, Suresh E, Bhattacharya S (2014) Design and fabrication of 3-dimensional helical structures in polydimethylsiloxane for flow control applications. Microsyst Technol 20(1):101–111

    Article  CAS  Google Scholar 

  48. Ghoshdastider S, Barizuddin S, Dweik M, Almasri M (2013) A micromachined impedance biosensor for accurate and rapid detection of E. coli O157: H7. RSC Adv 3(48):26297–26306

    Article  CAS  Google Scholar 

  49. Boehm A, Gottlieb P, Hua S (2007) On-chip microfluidic biosensor for bacterial detection and identification. Sens Actuators B 126(2):508–514

    Article  CAS  Google Scholar 

  50. Campbell GA, Mutharasan R (2005) Detection and quantification of proteins using self-excited PZT-glass millimeter-sized cantilever. Biosens Bioelectron 21(4):597–607

    Article  CAS  PubMed  Google Scholar 

  51. Weeks B, Camarero J, Noy A, Miller A, Yoreo JD (2003) Development of a microcantilever-based pathogen detector. In: Nanotech

    Google Scholar 

  52. Ilic B, Yang Y, Craighead H (2004) Virus detection using nanoelectromechanical devices. Appl Phys Lett 85(13):2604–2606

    Article  CAS  Google Scholar 

  53. Ilic B, Czaplewski D, Zalalutdinov M, Craighead H, Neuzil P, Campagnolo C, Batt C (2001) Single cell detection with micromechanical oscillators. J Vac Sci Technol 19(6):2825–2828

    Article  CAS  Google Scholar 

  54. Basu AK, Bhattacharya S (2016) Fabrication and resilience measurement of thin aluminium cantilevers using scanning probe microscopy. Taylor and Francis, London

    Book  Google Scholar 

  55. Yan G, Chan PC, Hsing I et al (2001) An improved TMAH Si-etching solution without attacking exposed aluminum. Sens Actuator 89:135–141

    Article  CAS  Google Scholar 

  56. Basu AK, Dwivedi P, Bhattacharya S (2016) Fabrication of 3-dimensional interdigited structure in microfluidic channel by one step maskless greyscale lithography. In: Bangalore India Nano, Bangalore

    Google Scholar 

  57. Chen Y-H, Kuo ZK, Cheng C-M (2015) Paper—a potential platform in pharmaceutical development. Trends Biotechnol 33(1):4–9

    Article  CAS  PubMed  Google Scholar 

  58. Cheng CM, Martinez AW, Gong J, Mace CR, Phillips ST, Carrilho E, Mirica KA, Whitesides GM (2010) Paper-based ELISA. Angew Chem 49:4771–4774

    Google Scholar 

  59. Nie J, Zhang Y, Lin L, Zhou C, Li H, Zhang L, Li J (2012) Low-cost fabrication of paper-based microfluidic devices by one-step plotting. Anal Chem 84(15):6331–6335

    Article  CAS  PubMed  Google Scholar 

  60. Li X, Tian J, Nguyen T, Shen W (2008) Paper-based microfluidic devices by plasma treatment. Anal Chem 80:9131–9134

    Article  CAS  PubMed  Google Scholar 

  61. Dungchai W, Chailapakul O, Henry C (2011) A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136(1):77–82

    Article  CAS  PubMed  Google Scholar 

  62. Li X, Tian J, Garnier G, Shen W (2010) Fabrication of paper-based microfluidic sensors by printing. Colloid Surf B 76(2):564–570

    Article  CAS  Google Scholar 

  63. Olkkonen J, Lehtinen K, Erho T (2010) Flexographically printed fluidic structures in paper. Anal Chem 82:10246–10250

    Article  CAS  PubMed  Google Scholar 

  64. Chitnis G, Ding Z, Chang C-L, Savran CA, Ziaie B (2011) Laser-treated hydrophobic paper: an inexpensive microfluidic platform. Lab Chip 11:1161–1165

    Article  CAS  PubMed  Google Scholar 

  65. Zhang Y, Bai J, Ying JY (2015) A stacking flow immunoassay for the detection of dengue-specific immunoglobulins in salivary fluid. Lab Chip 15:1465–1471

    Article  CAS  PubMed  Google Scholar 

  66. Koesdjojo MT, Pengpumkiat S, Wu Y, Boonloed A, Huynh D, Remcho TP, Remcho VT (2015) Cost effective paper-based colorimetric microfluidic devices and mobile phone camera readers for the classroom. J Chem Educ 92:737–741

    Article  CAS  Google Scholar 

  67. Unicef (2007) Malaria diagnosis: a guide for selecting rapid diagnostic test (RDT) kits

    Google Scholar 

  68. Pereira DY, Chiu RY, Zhang SC, Wu BM, Kamei DT (2015) Single-step, paper-based concentration and detection of a malaria biomarker. Anal Chim Acta 882:83–89

    Article  CAS  PubMed  Google Scholar 

  69. Weaver AA, Lieberman M (2015) Paper test cards for presumptive testing of very low quality antimalarial medications. Am Soc Tropical Med Hygiene 92:17–23

    Article  Google Scholar 

  70. Cordray MS, Kortum RRR (2015) A paper and plastic device for the combined isothermal amplification and lateral flow detection of Plasmodium DNA. Malar J 14:1

    Article  CAS  Google Scholar 

  71. Kumar A, Hens A, Arun RK, Chatterjee M, Mahato K, Layek K, Chanda N (2015) A paper based microfluidic device for easy detection of uric acid using positively charged gold nanoparticles. Analyst 140:1817–1821

    Article  CAS  PubMed  Google Scholar 

  72. Teoh BT, Sam SS, Tan KK, Danlami MB, Shu MH, Johari J, Hooi PS, Brooks D, Piepenburg O, Nentwich O, Smith AW, Franco L, Tenorio A, AbuBakar S (2015) Early detection of dengue virus by use of reverse transcription recombinase polymerase amplification. J Clin Microbiol 53:830–837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Yen C-W, Puig HD, Tam JO, Márquez JG, Bosch I, Schifferli KH, Gehrke L (2015) Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses. Lab Chip 15:1638–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lo S-J, Yang S-C, Yao D-J, Chen J-H, Tu W-C, Cheng C-M (2013) Molecular-level dengue fever diagnostic devices made. Lab Chip 13:2686–2692

    Article  CAS  PubMed  Google Scholar 

  75. Hamraoui A, Nylander T (2002) Analytical approach for the Lucas–Washburn equation. J Colloid Interface Sci 250:415–421

    Article  CAS  PubMed  Google Scholar 

  76. Byrnes S, Thiessen G, Fu E (2013) Progress in the development of paper-based diagnostics for low-resource point-of-care settings. Bioanalysis 5:2821–2836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fu E, Ramsey SA, Kauffman P, Lutz B, Yager P (2011) Transport in two-dimensional paper networks. Microfluid Nanofluid 10:29–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mansfield MA (2005) The use of nitrocellulose membranes in lateral-flow assays. In: Drugs of abuse. Springer, New York, pp 71–85

    Google Scholar 

  79. Li B, Fang X, Luo H, Peterson E, Seo Y-S, Samuilov V, Rafailovich M, Sokolov J, Gersappe D, Chu B (2006) Influence of electric field intensity, ionic strength, and migration distance on the mobility and diffusion in DNA surface electrophoresis. Electrophoresis 27(7):1312–1321

    Article  CAS  PubMed  Google Scholar 

  80. Lee HH, Kuo Y (2008) Surface modification of Gel-Free microchannel surface electrophoresis device for DNA identification. Jpn J Appl Phys 47(4R):2300

    Article  CAS  Google Scholar 

  81. Ghosh A, Patra TK, Kant R, Singh RK, Singh JK, Bhattacharya S (2011) Surface electrophoresis of ds-DNA across orthogonal pair of surfaces. Appl Phys Lett 98(16):164102

    Article  CAS  Google Scholar 

  82. Jones TB, Jones TB (2005) Electromechanics of particles. Cambridge University Press, Cambridge

    Google Scholar 

  83. Price JA, Burt JP, Pethig R (1988) Applications of a new optical technique for measuring the dielectrophoretic behaviour of micro-organisms. Biochim Biophys Acta 964(2):221–230

    Article  CAS  PubMed  Google Scholar 

  84. Voldman J, Gray ML, Toner M, Schmidt MA (2002) A microfabrication-based dynamic array cytometer. Anal Chem 74(16):3984–3990

    Article  CAS  PubMed  Google Scholar 

  85. Iliescu C, Xu GL, Samper V, Tay FE (2004) Fabrication of a dielectrophoretic chip with 3D silicon electrodes. J Micromech Microeng 15(3):494

    Article  CAS  Google Scholar 

  86. Lin IJ, Benguigui L (1982) High-intensity, high-gradient electric separation and dielectric filtration of particulate and granular materials. J Electrostat 13(3):257–278

    Article  CAS  Google Scholar 

  87. Chou C-F, Tegenfeldt JO, Bakajin O, Chan SS, Cox EC, Darnton N, Duke T, Austin RH (2002) Electrodeless dielectrophoresis of single-and double-stranded DNA. Biophys J 83(4):2170–2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. McGraw GJ, Davalos RV, Brazzle JD, Hachman JT, Hunter MC, Chames JM, Fiechtner GJ, Cummings EB, Fintschenko Y, Simmons BA (2005) Polymeric microfluidic devices for the monitoring and separation of water-borne pathogens utilizing insulative dielectrophoresis. In: MOEMS-MEMS Micro and Nanofabrication, pp 59–68

    Google Scholar 

  89. Shafiee H, Caldwell JL, Sano MB, Davalos RV (2009) Contactless dielectrophoresis: a new technique for cell manipulation. Biomed Microdevices 11(5):997–1006

    Article  CAS  PubMed  Google Scholar 

  90. Demierre N, Braschler T, Muller R, Renaud P (2008) Focusing and continuous separation of cells in a microfluidic device using lateral dielectrophoresis. Sens Actuators B 132(2):388–396

    Article  CAS  Google Scholar 

  91. Hoeb M, Radler JO, Klein S, Stutzmann M, Brandt MS (2007) Light-induced dielectrophoretic manipulation of DNA. Biophys J 93(3):1032–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jaramillo MC, Torrents E, Martin-Duarte R, Madou MJ, Juarez A (2010) On‐line separation of bacterial cells by carbon‐electrode dielectrophoresis. Electrophoresis 31(17):2921–2928

    Article  CAS  Google Scholar 

  93. Saucedo-Espinosa MA, LaLonde A, Gencoglu A, Romero-Creel MF, Dolas JR, Lapizco-Encinas BH (2016) Dielectrophoretic manipulation of particle mixtures employing asymmetric insulating posts. Electrophoresis 37(2):282–290

    Article  CAS  PubMed  Google Scholar 

  94. Bakewell DJ, Morgan H (2006) Dielectrophoresis of DNA: time-and frequency-dependent collections on microelectrodes. IEEE Trans NanoBiosci 5(1):1–8

    Article  Google Scholar 

  95. Kasahara H, Ding Z, Nakano M, Suehiro J (2015) Effect of DNA length on dielectrophoretic characteristics of DNA-labeled microbeads. In: IEEE international conference on industrial technology, pp 3341–3346

    Google Scholar 

  96. Wilding P, Kricka LJ (1996) Polymerase chain reaction. U.S. Patent 5,587,128, 24

    Google Scholar 

  97. Bhattacharya S, Gao Y, Korampally V, Othman MT, Grant S, Kleiboeker SB, Gangopadhyay K, Gangopadhyay S (2007) Optimization of design and fabrication processes for realization of a PDMS-SOG-silicon DNA amplification chip. J Microelectromech Syst 16(2):401–410

    Article  CAS  Google Scholar 

  98. Nayak M, Singh D, Singh H, Kant R, Gupta A, Pandey SS, Mandal S, Ramanathan G, Bhattacharya S (2013) Integrated sorting, concentration and real time PCR based detection system for sensitive detection of microorganisms. Sci Rep 3:3266

    Article  PubMed  PubMed Central  Google Scholar 

  99. Bhattacharya S, Salamat S, Morisette D, Banada P, Akin D, Liu Y-S, Bhunia AK, Ladisch M, Bashir R (2008) PCR-based detection in a micro-fabricated platform. Lab Chip 8(7):1130–1136

    Article  CAS  PubMed  Google Scholar 

  100. Korampally V, Bhattacharya S, Gao Y, Grant S, Kleiboeker SB, Gangopadhyay K, Tan J, Gangopadhyay S (2006) Optimization of fabrication process for a PDMS-SOG-Silicon based PCR Micro Chip through system identification techniques. In: IEEE international symposium on computer-based medical system, pp 329–334

    Google Scholar 

  101. Cai M, Li F, Zhang Y, Wang Q (2010) One-pot polymerase chain reaction with gold nanoparticles for rapid and ultrasensitive DNA detection. Nano Res 3(8):557–563

    Article  CAS  Google Scholar 

  102. Deng H, Xu Y, Liu Y, Che Z, Guo H, Shan S, Sun Y, Liu X, Huang K, Ma X, Wu Y (2012) Gold nanoparticles with asymmetric polymerase chain reaction for colorimetric detection of DNA sequence. Anal Chem 84(3):1253–1258

    Article  CAS  PubMed  Google Scholar 

  103. Shen H, Hu M, Yang Z, Wang C, Zhu L (2005) Polymerase chain reaction of Au nanoparticle-bound primers. Chin Sci Bullet 50(18):2016–2020

    Article  CAS  Google Scholar 

  104. Zimmerman U, Pilwat G, Riemann F (1974) Dielectric breakdown of cell membranes. In Membrane transport in plants, pp 146–153

    Google Scholar 

  105. Patel VK, Kant R, Bhatt G, Ganguli A, Singh D, Nayak M, Gupta A, Gangopadhyay K, Gangopadhyay S, Gurunath R, Bhattacharya S Synchronized electro-mechanical shock wave induced bacterial transformation, Paper under review

    Google Scholar 

  106. Grayson A, Shawgo R, Johnson A, Flynn N, Li Y, Cima M (2004) A BioMEMS review: MEMS technology for physiologically integrated devices. Proc IEEE 92:6–21

    Article  CAS  Google Scholar 

  107. Grieshaber D, MacKenzie R, Voeroes J, Reimhult E (2008) Electrochemical biosensors-sensor principles and architectures. Sensors 8:1400–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ponomareva O, Arlyapov V, Alferov V, Reshetilov A (2011) Microbial biosensors for detection of biological oxygen demand (a Review). Appl Biochem Microbiol 47:1–11

    Article  CAS  Google Scholar 

  109. Mu Y, Jia D, He Y, Miao Y, Wu H (2011) Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens Bioelectron 26:2948–2952

    Article  CAS  PubMed  Google Scholar 

  110. Yang Y, Chuang M, Lou S, Wang J (2010) Thick-film textile-based amperometric sensors and biosensors. Analyst 135:1230–1234

    Article  CAS  PubMed  Google Scholar 

  111. Gao Y, Bhattacharya S, Chen X, Barizuddin S, Gangopadhyay S, Gillis K (2009) A microfluidic cell trap device for automated measurement of quantal catecholamine release from cells. Lab Chip 9:3442–3446

    Article  CAS  PubMed  Google Scholar 

  112. Piloto C, Notarianni M, Shafiei M, Taran E, Galpaya D, Yan C (2014) Highly NO2 sensitive caesium doped graphene oxide conductometric sensors. Beilstein J Nanotechnol 5:1073–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Latif U, Dickert F (2011) Conductometric sensors for monitoring degradation of automotive engine oil. Sensors 11:8611–8625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dzydevich S, Shul’ga A, Soldatkin A, Nyamsi Hendji A, Jaffrezic-Renault N, Martelet C (1994) Application of conductometric for sensitive detection of pesticides biosensor based on the cholinesterases. Electroanalysis 6:752–758

    Article  CAS  Google Scholar 

  115. Zhylyak G, Dzyadevich S, Korpan Y, Soldatkin A, El’Skaya A (1995) Application of urease conductometric biosensor for heavy-metal ion determination. Sens Actuators B 24:145–148

    Article  CAS  Google Scholar 

  116. Soldatkin A, Dzyadevich S, Korpan Y, Arkhipova V, Zhylyak G, Piletsky S (1998) Biosensors based on conductometric detection. Biopolymers Cell 14:268

    Article  CAS  Google Scholar 

  117. Anh T, Dzyadevych S, Van M, Renault N, Duc C, Chovelon J (2004) Conductometric tyrosinase biosensor for the detection of diuron, atrazine and its main metabolites. Talanta 63:365–370

    Article  CAS  PubMed  Google Scholar 

  118. Xuejiang W, Dzyadevych S, Chovelon J, Renault N, Ling C, Siqing X (2006) Conductometric nitrate biosensor based on methyl viologen/Nafion®/nitrate reductase interdigitated electrodes. Talanta 69:450–455

    Article  PubMed  CAS  Google Scholar 

  119. Wang Y, Zhang Z, Jain V, Yi J, Mueller S, Sokolov J (2010) Potentiometric sensors based on surface molecular imprinting: detection of cancer biomarkers and viruses. Sens Actuators B 146:381–387

    Article  CAS  Google Scholar 

  120. Bandodkar A, Hung V, Jia W, Valdés-Ramírez G, Windmiller J, Martinez A (2013) Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst 138:123–128

    Article  CAS  PubMed  Google Scholar 

  121. Novell M, Parrilla M, Crespo G, Rius F, Andrade F (2012) Paper-based ion-selective potentiometric sensors. Anal Chem 84:4695–4702

    Article  CAS  PubMed  Google Scholar 

  122. Siva Rama Krishna V, Bhat N, Amrutur B, Chakrapani K, Sampath S (2011) Detection of glycated hemoglobin using 3-aminophenylboronic acid modified graphene oxide. Life Science Systems and Applications Workshop (LiSSA), 2011 IEEE/NIH, pp 1–4

    Google Scholar 

  123. Liu Y, Banada P, Bhattacharya S, Bhunia A, Bashir R (2008) Electrical characterization of DNA molecules in solution using impedance measurements. Appl Phys Lett 92:143902

    Article  CAS  Google Scholar 

  124. Yang M, Li S, Jiang D (2014) Review on optical fiber sensing technologies for industrical applications at the NEL-FOST. In: EWSHM-7th European workshop on structural health monitoring

    Google Scholar 

  125. Bhattacharya S, Jang J, Yang L, Akin D, Bashir R (2007) BioMEMS and nanotechnology‐based approaches for rapid detection of biological entities. J Rapid Meth Automat Microbiol 15:1–32

    Article  CAS  Google Scholar 

  126. Seema Yardi A, Kant R, Boolchandani D, Bhattacharya S (2015) High efficiency coupling of optical fibres with SU8 micro-droplet using laser welding process. Lasers in manufacturing and materials processing, pp 1–17

    Google Scholar 

  127. Binnig G, Quate C, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930

    Article  CAS  PubMed  Google Scholar 

  128. Lavrik N, Sepaniak M, Datskos P (2004) Cantilever transducers as a platform for chemical and biological sensors. Rev Sci Instrum 75:2229–2253

    Article  CAS  Google Scholar 

  129. Tamayo J, Kosaka P, Kosaka J, San Paulo A, Calleja M (2013) Biosensors based on nanomechanical systems. Chem Soc Rev 42:1287–1311

    Article  CAS  PubMed  Google Scholar 

  130. Braun T, Ghatkesar M, Backmann N, Grange W, Boulanger P, Letellier L (2009) Quantitative time-resolved measurement of membrane protein–ligand interactions using microcantilever array sensors. Nat Nanotechnol 4:179–185

    Article  CAS  PubMed  Google Scholar 

  131. Naik A, Hanay M, Hiebert W, Feng X, Roukes M (2009) Towards single-molecule nanomechanical mass spectrometry. Nat Nanotechnol 4:445–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kumar V, Boley W, Yang Y, Ekowaluyo H, Miller J, Chiu G (2011) Bifurcation-based mass sensing using piezoelectrically-actuated microcantilevers. Appl Phys Lett 98:153510

    Article  CAS  Google Scholar 

  133. Gupta A, Akin D, Bashir R (2004) Single virus particle mass detection using microresonators with nanoscale thickness. Appl Phys Lett 84:1976–1978

    Article  CAS  Google Scholar 

  134. Gupta A, Akin D, Bashir R (2004) Detection of bacterial cells and antibodies using surface micromachined thin silicon cantilever resonators. J Vacuum Sci Technol B 22:2785–2791

    Article  CAS  Google Scholar 

  135. Davila A, Jang J, Gupta A, Walter T, Aronson A, Bashir R (2007) Microresonator mass sensors for detection of Bacillus anthracis Sterne spores in air and water. Biosens Bioelectron 22:3028–3035

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shantanu Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhatt, G. et al. (2016). Microfluidics Overview. In: Dixit, C., Kaushik, A. (eds) Microfluidics for Biologists. Springer, Cham. https://doi.org/10.1007/978-3-319-40036-5_2

Download citation

Publish with us

Policies and ethics