Microbiome and Cardiac Health

  • Enrico BiffiEmail author


Cardiovascular disease (CVD) and other disorders included in the metabolic syndrome (MS) show common pathogenetic factors including a status of chronic low-grade inflammation (CLGI). Recent insights have generated an interesting new perspective introducing the possibility that our microbiota might be involved in the development of these disorders, causing a chronic low-grade inflammatory status and metabolic handling of the host. The relationship between microbiota and host is very complex and is based on a mutual influence. Accordingly, dietary composition and caloric intake seem to alter normal intestinal microbial composition and function, causing effects on the immune system of the host and its metabolic regulation. Several findings have shown that a number of environmental associated factors, damaging the permeability of the intestinal barrier, can facilitate the constant transition of small amounts of bacterial endotoxins in the circulation able to activate, in different organs and tissues, the innate immunity receptors (PRRs), leading to the appearance of a low-grade systemic inflammation. Furthermore, in recent years, the pathogenetic role of PRRs and innate immunity in cardiovascular diseases and metabolic syndrome has become increasingly clear, proving to be the link between intestinal dysbiosis and CLGI.


Celiac Disease Conjugated Linoleic Acid Migration Inhibitory Factor Intestinal Permeability Corticotrophin Release Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A special thanks to Valentina Cagnetta (MD) for assisting me in the manuscript editing.

Competing interests

Enrico Biffi declares a conflict of interest as he serves as a medical consultant for GUNA S.p.a. and Profenix Srl.


  1. 1.
    Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 104:979–984PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Lyte M (2014) Microbial endocrinology and the microbiota-gut-brain axis. Adv Exp Med Bill 817:3–24CrossRefGoogle Scholar
  3. 3.
    Qin R, Li J, Raes M, Arumugam KS, Burgdorf C, Manichanh T, Nielsen N, Pons F, Levenez F, Yamada T, MetaHIT Consortium et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, Deal C et al (2009) The NIH human microbiome project. Genome Res 19:2317–2323PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6, e280PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Willing BP, Russell SL, Brett Finlay B (2011) Shifting the balance: antibiotic effects on host–microbiota mutualism. Nat Rev Microbiol 9:233–243PubMedCrossRefGoogle Scholar
  8. 8.
    Pace NR, Stahl DA, Lane DJ, Olsen GJ (1985) Analyzing natural microbial populations by rRNA sequences. ASM News 51:4–12Google Scholar
  9. 9.
    Arumugam M et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O’Sullivan O et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184PubMedGoogle Scholar
  11. 11.
    Koren O, Spor A, Felin J, Fak F, Stombaugh J, Tremaroli V, Behre CJ, Knight R, Fagerberg B, Ley RE, Bäckhed F (2011) Human oral, gut, and plaque microbiota in patients with atherosclerosis PNAS 108 [Suppl 1]:4592–4598Google Scholar
  12. 12.
    Stoll LL, Denning GM, Weintraub NL (2006) Endotoxin, TLR4 signaling and vascular inflammation: potential therapeutic targets in cardiovascular disease. Curr Pharm Des 32(12):4229–4245CrossRefGoogle Scholar
  13. 13.
    Cani PD, Lecourt E, Dewulf EM, Sohet FM, Pachikian BD, Naslain D, De Backer F, Neyrinck AM, Delzenne NM (2009) Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut pep- tide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr 90:1236–1243PubMedCrossRefGoogle Scholar
  14. 14.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023PubMedCrossRefGoogle Scholar
  15. 15.
    Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57(6):1470–1481PubMedCrossRefGoogle Scholar
  16. 16.
    Creely SG, McTernan PG, Kusminski CM, Fischer M, Da Silva NF, Khanolkar M, Evans M, Harte AL, Kumar S (2006) Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Endocrinol Metab 292:E740–E747CrossRefGoogle Scholar
  17. 17.
    Frazier TH, DiBaise JK, McClain CJ (2011) Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. JPEN J Parenter Enteral Nutr 35 [5 Suppl]:14S–20SPubMedCrossRefGoogle Scholar
  18. 18.
    Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, Hardt PD (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 18:190–195CrossRefGoogle Scholar
  19. 19.
    Ravussin Y, Koren O, Spor A, Leduc C, Gutman R, Stombaugh J, Knight R, Ley RE, Leibel RL (2012) Responses of gut microbiota to diet composition and weight loss in lean and obese mice. Obesity 20:738–747PubMedCrossRefGoogle Scholar
  20. 20.
    Armougom F, Henry M, Vialettes B, Raccah D, Raoult D (2009) Monitoring bacterial community of human gut microbiota reveals an increase in lactobacillus in obese patients and methanogens in anorexic patients. PLoS One (9) 4:e7125Google Scholar
  21. 21.
    Million M, Angelakis E, Maraninchi M, Henry M, Giorgi R, Valero R, Vialettes B, Raoult D (2013) Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int J Obes 37(11):1460–1466CrossRefGoogle Scholar
  22. 22.
    Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes F, Holt RD, Shurin B, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601CrossRefGoogle Scholar
  23. 23.
    Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, Knight R, Ahima RS, Bushman F, Wu GD (2009) High fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137(5):1716–1724PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107(33):14691–14696PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, Gibson GR, Delzenne NM (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50:2374–2383PubMedCrossRefGoogle Scholar
  27. 27.
    Wang F, Schwarz BT, Graham WV, Wang Y, Su L, Clayburgh DR, Abraham C, Turner JR (2006) IFN-gamma-induced TNFR2 expression is required for TNF-dependent intestinal epithelial barrier dysfunction. Gastroenterology 131:1153–1163PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Wang Z, Xiao G, Yao Y, Guo S, Lu K, Sheng Z (2006) The role of bifidobacteria in gut barrier function after thermal injury in rats. J Trauma 61:650–657PubMedCrossRefGoogle Scholar
  29. 29.
    Hosoi T, Okuma Y, Matsuda T, Nomura Y (2005) Novel pathway for LPS-induced afferent vagus nerve activation: possible role of nodose ganglion. Auton Neurosci 120:104–107PubMedCrossRefGoogle Scholar
  30. 30.
    He W, Wang ML, Jiang HQ, Steppan CM, Shin ME, Thurnheer MC, Cebra JJ, Lazar MA, Wu GD (2003) Bacterial colonization leads to the colonic secretion of RELM/FIZZ2, a novel goblet cell-specific protein. Gastroenterology 125:1388–1397PubMedCrossRefGoogle Scholar
  31. 31.
    Nair MG, Guild KJ, Artis D (2006) Novel effector molecules in type 2 inflammation: lessons drawn from helminth infection and allergy. J Immunol 177:1393–1399PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Artis D, Wang ML, Keilbaugh SA, He W, Brenes M, Swain GP, Knight PA, Donaldson DD, Lazar MA, Miller HR, Schad GA, Scott P, Wu GD (2004) RELM/FIZZ2 is a goblet cell-specific immune effector molecule in the gastrointestinal tract. Proc Natl Acad Sci USA 101:13596–13600PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Hogan SP, Seidu L, Blanchard C, Groschwitz K, Mishra A, Karow ML, Ahrens R, Artis D, Murphy AJ, Valenzuela DM, Yancopoulos GD, Rothenberg ME (2006) Resistin-like molecule β regulates innate colonic function: barrier integrity and inflammation susceptibility. J Allerg Clin Immunol 118:257–268CrossRefGoogle Scholar
  34. 34.
    Fujio J, Kushiyama A, Sakoda H, Fujishiro M, Ogihara T, Fukushima Y, Anai M, Horike N, Kamata H, Uchijima Y, Kurihara H, Asano T (2008) Regulation of gut-derived resistin-like molecule β expression by nutrients. Diabetes Res Clin Pract 79:2–10PubMedCrossRefGoogle Scholar
  35. 35.
    Tlaskalová-Hogenová H, Stepánková R, Hudcovic T, Tucková L, Cukrowska B, Lodinová-Zádníková R, Kozáková H, Rossmann P, Bártová J, Sokol D, Funda DP, Borovská D, Reháková Z, Sinkora J, Hofman J, Drastich P, Kokesová A (2004) Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett 93:97–108PubMedCrossRefGoogle Scholar
  36. 36.
    Kamdar K, Nguyen V, DePaolo RW (2013) Toll-like receptor signaling and regulation of intestinal immunity. Virulence 4:207–212PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Inohara N, Nuñez G (2003) NODs: intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol 3(5):371–382PubMedCrossRefGoogle Scholar
  38. 38.
    Sanderson IL, Walker WA (2007) TLRs in the Gut I. The role of TLRs/Nods in intestinal development and homeostasis (2007) TLRs in the Gut I. The role of TLRs/Nods in intestinal development and homeostasis. Am J Physiol Gastrointest Liver Physiol 292(1):G6–10PubMedCrossRefGoogle Scholar
  39. 39.
    Chen GY, Nuñez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 12(10):826–837CrossRefGoogle Scholar
  40. 40.
    Cario E (2005) Bacterial interactions with cells of the intestinal mucosa: toll like receptors and nod2. Gut 54:1182–1193PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Tsukita S, Furuse M (1999) Occludin and claudins in tight-junction strands: leading or supporting players? Trends Cell Biol 9:268–273PubMedCrossRefGoogle Scholar
  42. 42.
    Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA (1986) Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol 103:755–766PubMedCrossRefGoogle Scholar
  43. 43.
    Biffi E (2014) Dalla disbiosi alla low grade chronic inflammation.– Effetti del Colostro Noni sul turnover delle cellule epiteliali, sugli stati infiammatori e sull’integrità dei sistemi giunzionali della mucosa intestinale. La Med Biol 4:77–83Google Scholar
  44. 44.
    Liévin-Le MV, Servin AL (2006) The front line of enteric host defense against unwelcome intrusion of harmful micro-organisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev 19:315–337CrossRefGoogle Scholar
  45. 45.
    Guttman JA, Samji FN, Li Y, Vogl AW, Finlay BB (2006) Evidence that tight junctions are disrupted due to intimate bacterial contact and not inflammation during attaching and effacing pathogen infection in vivo. Infect Immun 74:6075–6084PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Tabata T, Tani T, Endo Y, Hanasawa K (2002) Bacterial translocation and peptidoglycan translocation by acute ethanol administration. J Gastroenterol 37:726–731PubMedCrossRefGoogle Scholar
  47. 47.
    Cani PD, Delzenne NM (2009) The role of gut microbiota in energy metabolism and metabolism disease. Curr Pharm Des 15:1546.1558CrossRefGoogle Scholar
  48. 48.
    De La Serre CB, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE (2010) Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol 299:440–448CrossRefGoogle Scholar
  49. 49.
    Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GM, Neyrinck AM, Possemiers S, Van Holle A, François P, De Vos WM, Delzenne NM, Schrenzel J, Cani PD (2011) Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60:2775–2786PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Ross R (1999) Atherosclerosis is an inflammatory disease. Am Heart J 138:S419–420PubMedCrossRefGoogle Scholar
  51. 51.
    Cani PD, Osto M, Geurts L, Everard A (2012) Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 3:279–288PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, Charo I, Leibel RL, Ferrante AW (2006) Jr CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 116:115–124PubMedCrossRefGoogle Scholar
  53. 53.
    Velasquez OR, Henninger K, Fowler M, Tso P, Crissinger KD (1993) Oleic acid-induced mucosal injury in developing piglet intestine. Am J Physiol 264:G576–G582PubMedGoogle Scholar
  54. 54.
    Cario E, Gerken G, Podolsky DK (2007) Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 132:1359–1374PubMedCrossRefGoogle Scholar
  55. 55.
    Caricilli AM, Picardi PK, de Abreu LL, Ueno M, Prada PO, Ropelle ER, Hirabara SM, Castoldi Â, Vieira P, Camara NO, Curi R, Carvalheira JB, Saad MJ (2011) Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice. PLoS Biol 9, e1001212PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermudez-Humaran LG, Smirnova N, Berge M, Sulpice T, Lahtinen S, Ouwehand A, Langella P, Rautonen N, Sansonetti PJ, Burcelin R (2011) Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: Molecular mechanisms and probiotic treatment. EMBO Mol Med 2011(3):559–572CrossRefGoogle Scholar
  57. 57.
    Otte JM, Cario E, Podolsky DK (2004) Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology 126:1054–1070PubMedCrossRefGoogle Scholar
  58. 58.
    Neal MD, Leaphart C, Levy R, Prince J, Billiar TR, Watkins S, Li J, Cetin S, Ford H, Schreiber A, Hackam DJ (2006) Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J Immunol 176:3070–3079PubMedCrossRefGoogle Scholar
  59. 59.
    Lotz M, Gutle D, Walther S, Menard S, Bogdan C, Hornef MW (2006) Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. J Exp Med 203:973–984PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Erridge C, Attina T, Spickett CM, Webb DJ (2007) A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr 86:1286–1292PubMedGoogle Scholar
  61. 61.
    Ghoshal S, Witta J, Zhong J, de Villiers W, Eckhardt E (2009) Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res 50:90–97PubMedCrossRefGoogle Scholar
  62. 62.
    Hornef MW, Frisan T, Vandewalle A, Normark S, Richter-Dahlfors A (2002) Toll-like receptor 4 resides in the Golgi apparatus and colocalizes with internalized lipopolysaccharide in intestinal epithelial cells. J Exp Med 195:559–570PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kiecolt-Glaser JK, Preacher KJ, MacCallum RC, Atkinson C, Malarkey WB, Glaser R (2003) Chronic stress and age-related increases in the proinflammatory cytokine IL-6. Proc Natl Acad Sci USA 100:9090–9095PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Allen RG, Lafuse WP, Galley JD, Ali MM, Ahmer BMM, Bailey MT (2012) The intestinal microbiota are necessary for stressor-induced enhancement of splenic macrophage microbicidal activity. Brain Behav Immun 26:371–382PubMedCrossRefGoogle Scholar
  65. 65.
    Bailey MT (2014) Influence of stressor-induced nervous system activation on the intestinal microbiota and the importance for immunomodulation. Adv Exp Med Biol 817:255–276PubMedCrossRefGoogle Scholar
  66. 66.
    Konturek PC, Brzozowski T, Konturek SJ (2011) Stress and the gut: pathophysiology, clinical consequences, diagnostic approach and treatment options. J Physiol Pharmacol 62(6):591–599PubMedGoogle Scholar
  67. 67.
    Farhadi A, Fields JZ, Keshavarzian A (2007) Mucosal mast cells are pivotal elements in inflammatory bowel disease that connect the dots: stress, intestinal hyperpermeability and inflammation. World J Gastroenterol 13:3027–3030PubMedPubMedCentralGoogle Scholar
  68. 68.
    Santos J, Yates D, Guilarte M, Vicario M, Alonso C, Perdue MH (2008) Stress neuropeptides evoke epithelial responses via mast cell activation in the rat colon. Psychoneuroendocrinology 33:1248–1256PubMedCrossRefGoogle Scholar
  69. 69.
    Saunders PR, Santos J, Hanssen NP, Yates D, Groot J, Perdue MH (2002) Physical and psychological stress in rats enhances colonic epithelial permeability via peripheral CRH. Dig Dis Sci 47:208–215PubMedCrossRefGoogle Scholar
  70. 70.
    Overman EL, Rivier JE, Moeser AJ (2012) CRF induces intestinal epithelial barrier injury via the release of mast cell proteases and TNF-α. PLoS One 7, e39935PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Sun Y, Zhang M, Chen CC, Gillilland M, Sun X, El-Zaatari M, Huffnagle GB, Young VB, Zhang J, Hong SC, Chang YM, Gumucio DL, Owyang C, Kao JY (2013) Stress-induced corticotropin-releasing hormone-mediated NLRP6 inflammasome inhibition and transmissible enteritis in mice. Gastroenterology 144:1478–1487PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Bjarnason I, Takeuchi K (2009) Intestinal permeability in the pathogenesis of NSAID-induced enteropathy. J Gastroenterol 44:23–29PubMedCrossRefGoogle Scholar
  73. 73.
    Somasundaram S, Hayllar J, Rafi S, Wrigglesworth J, Macpherson A, Bjarnason I (1995) The biochemical basis of NSAID-induced damage to the gastrointestinal tract: a review and a hypothesis. Scand J Gastroenterol 30:289–299PubMedCrossRefGoogle Scholar
  74. 74.
    Wallas JL (2013) Mechanisms, prevention and clinical implications of nonsteroidal anti-inflammatory drug-enteropathy. World J Gastroenterol 19(12):1861–1876CrossRefGoogle Scholar
  75. 75.
    Cooper BT, Holmes GK, Ferguson R, Thompson RA, Allan RN, Cooke WT (1981) Gluten-sensitive diarrhea without evidence of celiac disease. Gastroenterology 81:192–194PubMedGoogle Scholar
  76. 76.
    Sapone A, Bai JC, Ciacci C, Dolinsek J, Green PHR, Hadjivassiliou M, Kaukinen K, Rostami K, Sanders DS, Schumann M, Ullrich R, Villalta D, Volta U, Catassi C, Fasano A (2012) Spectrum of gluten-related disorders: consensus on new nomenclature and classification. BMC Med 10:13PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Sapone A, Lammers KM, Mazzarella G, Mikhailenko I, Cartenì M, Casolaro V, Fasano A (2010) Differential mucosal IL-17 expression in two gliadin-induced disorders: gluten sensitivity and the autoimmune enteropathy celiac disease. Int Arch Allergy Immunol 152:75–80PubMedCrossRefGoogle Scholar
  78. 78.
    Wang W, Uzzau S, Goldblum SE, Fasano A (2000) Human zonulin, a potential modulator of intestinal tight junctions. J Cell Sci 113:4435–4440PubMedGoogle Scholar
  79. 79.
    Tripathi A, Lammers KM, Goldblum S, Shea-Donohue T, Netzel-Arnett S, Buzza MS, Antalis TM, Vogel SN, Zhao A, Yang S, Arrietta MC, Meddings JB, Fasano A (2009) Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc Natl Acad Sci USA 106:16799–804PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Fasano A (2001) Pathological and therapeutical implications of macromolecule passage through the tight junction. In: Tight Junctions. CRC, Boca Raton, FL, pp 697–722Google Scholar
  81. 81.
    El Asmar R, Panigrahi P, Bamford P, Berti I, Not T, Coppa GV, Catassi C, Fasano A (2002) Host-dependent activation of the zonulin system is involved in the impairment of the gut barrier function following bacterial colonization. Gastroenterology 123:1607–1615PubMedCrossRefGoogle Scholar
  82. 82.
    Jin M, Barron E, He S, Ryan SJ, Hinton DR (2002) Regulation of RPE intercellular junction integrity and function by hepatocyte growth factor. Invest Ophthalmol Vis Sci 43:2782–2790PubMedGoogle Scholar
  83. 83.
    Fasano A (2011) Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev 91:151–175PubMedCrossRefGoogle Scholar
  84. 84.
    Barone MV, Gimigliano A, Castoria G, Paolella G, Maurano F, Paparo F, Maglio M, Mineo A, Miele E, Nanayakkara M, Troncone R, Auricchio S (2007) Growth factor-like activity of gliadin, an alimentary protein: implications for coeliac disease. Gut 56:480–488PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Nikulina M (2004) Wheat gluten causes dendritic cell maturation and chemokine secretion. J Immunol 173:1925–1933PubMedCrossRefGoogle Scholar
  86. 86.
    Drago S, El AR, Di PM, Grazia CM, Tripathi A, Sapone A, Thakar M, Iacono G, Carroccio A, D’Agate C, Not T, Zampini L, Catassi C, Fasano A (2006) Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol 41:408–419PubMedCrossRefGoogle Scholar
  87. 87.
    Fasano A (2009) Surprises from celiac disease. Sci Am 301:54–61PubMedCrossRefGoogle Scholar
  88. 88.
    Lammers KM, Khandelwal S, Chaudhry F, Kryszak D, Puppa EL, Casolaro V, Fasano A (2011) Identification of a novel immunomodulatory gliadin peptide that causes interleukin-8 release in a chemokine receptor CXCR3-dependent manner only in patients with coeliac disease. Immunology 132:432–440PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Thomas KE, Fasano A, Vogel SN (2006) Gliadin stimulation of murine macrophage inflammatory gene expression and intestinal permeability are MyD88-dependent: role of the innate immune response in celiac disease. J Immunol 176:2512–2521PubMedCrossRefGoogle Scholar
  90. 90.
    Zufferey C, Erhart D, Saurer L, Mueller C (2009) Production of interferon-γ by activated T-cell receptor-αβ CD8αβ intestinal intraepithelial lymphocytes is required and sufficient for disruption of the intestinal barrier integrity. Immunology 128:351–359PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Witztum JL, Lichtman AH (2014) The influence of innate and adaptive immune responses on atherosclerosis. Annu Rev Pathol 9:73–102PubMedCrossRefGoogle Scholar
  92. 92.
    Wiedermann CJ, Kiechl S, Dunzendorfer S, Schratzberger P, Egger G, Oberhollenzer F, Willeit J (1999) Association of endotoxemia with carotid atherosclerosis and cardiovascular disease. Prospective results from the Bruneck study. J Am Coll Cardiol 34:1975–1981PubMedCrossRefGoogle Scholar
  93. 93.
    Schratzberger P, Kiechl S, Dunzendorfer S, Kahler CM, Patsch JR, Willeit J, Wiedermann CJ (2000) Plasma-induced endothelial activation associated with incident atherosclerosis: prospective results from the Bruneck Study. J Cardiovasc Risk 7:285–291PubMedCrossRefGoogle Scholar
  94. 94.
    Alekperov ÉZ, Nadzhafov RN (2010) Contemporary concepts of the role of inflammation in atherosclerosis. Kardiologiia 50(6):88–91PubMedGoogle Scholar
  95. 95.
    Read TE, Harris HW, Grunfeld C, Feingold KR, Kane JP, Rapp JH (1993) The protective effect of serum lipoproteins against bacterial lipopolysaccharide. Eur Heart J 14 [Suppl K]:125–129Google Scholar
  96. 96.
    Pajkrt D, Doran JE, Koster F, Lerch PG, Arnet B, van der Poll T, ten Cate JW, van Deventer SJH (1996) Antiinflammatory effects of reconstituted high-density lipoprotein during human endotoxemia. J Exp Med 184:1601–1608PubMedCrossRefGoogle Scholar
  97. 97.
    Li WG, Miller FJ Jr, Zhang HJ, Spitz DR, Oberley LW, Weintraub NL (2001) H(2)O(2)-induced O(2) production by a non-phagocytic NAD(P)H oxidase causes oxidant injury. J Biol Chem 276:29251–29256PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Spirig R, Tsui J, Shaw S (2012) The emerging role of TLR and innate immunity in cardiovascular disease. Cardiol Res Pract 2012:181394. doi: 10.1155/2012/181394 PubMedPubMedCentralGoogle Scholar
  99. 99.
    Libby P, Okamoto Y, Rocha VZ, Folco E (2010) Inflammation in atherosclerosis. Nature 420:868–874CrossRefGoogle Scholar
  100. 100.
    Mantovani A, Dejana E (1989) Cytokines as communication signals between leukocytes and endothelial cells. Immunol Today 10:370–375PubMedCrossRefGoogle Scholar
  101. 101.
    Pant S, Deshmukh A, Gurumurthy GS, Pothineni NV, Watts TE, Romeo F, Mehta JL (2014) Inflammation and atherosclerosis—revisited. J Cardiovasc Pharmacol Ther 19:170–178PubMedCrossRefGoogle Scholar
  102. 102.
    Calandra T (2003) Macrophage migration inhibitory factor and host innate immune responses to microbes. Scand J Infect Dis 35:573–576PubMedCrossRefGoogle Scholar
  103. 103.
    Diks SH, van Deventer SJH, Peppelenbosch MP (2001) Lipopolysaccharide recognition, internalisation, signalling and other cellular effects. J Endotoxin Res 7:335–348PubMedGoogle Scholar
  104. 104.
    Strieter RM, Remick DG, Ham JM, Colletti LM, Lynch JP 3rd, Kunkel SL (1990) Tumor necrosis factor-α gene expression in human whole blood. J Leukoc Biol 47:366–370PubMedGoogle Scholar
  105. 105.
    Harrington JR (2000) The role of MCP-1 in atherosclerosis. Stem Cells 18:65–66PubMedCrossRefGoogle Scholar
  106. 106.
    Rice JB, Stoll LL, Li W-G, Denning GM, Weydert J, Charipar E, Richenbacher WE, Miller FJ Jr, Weintraub NL (2003) Low level endotoxin induces potent inflammatory activation of human blood vessels: inhibition by statins. Arterioscler Thromb Vasc Biol 23:1576–1582PubMedCrossRefGoogle Scholar
  107. 107.
    Stoll LL, Denning GM, Li WG, Rice JB, Harrelson AL, Romig SA, Gunnlaugsson ST, Miller FJ Jr, Weintraub NL (2004) Regulation of endotoxin-induced proinflammatory activation in human coronary artery cells: expression of functional membrane-bound CD14 by human coronary artery smooth muscle cells. J Immunol 173:1336–1343PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Daniels RH, Finnen MJ, Hill ME, Lackie JM (1992) Recombinant human monocyte IL-8 primes NADPH-oxidase and phospholipase A2 activation in human neutrophils. Immunology 75:157–163PubMedPubMedCentralGoogle Scholar
  109. 109.
    Shen Y, Sultana C, Arditi M, Kim KS, Kalra VK (1998) Endotoxin-induced migration of monocytes and PECAM-1 phosphorylation are abrogated by PAF receptor antagonists. Am J Physiol 75:E479–E486Google Scholar
  110. 110.
    Eppihimer MJ, Wolitzky B, Anderson DC, Labow MA, Granger DN (1996) Heterogeneity of expression of E- and P-selectins in vivo. Circ Res 79:560–569PubMedCrossRefGoogle Scholar
  111. 111.
    Newman PJ (1994) The role of PECAM-1 in vascular cell biology. Ann N Y Acad Sci 714:165–174PubMedCrossRefGoogle Scholar
  112. 112.
    Vestweber D (2007) Adhesion and signaling molecules controlling the transmigration of leukocytes through endothelium. Immunol Rev 218:178–196PubMedCrossRefGoogle Scholar
  113. 113.
    Higashimori M, Tatro JB, Moore KJ, Mendelsohn ME, Galper JB, Beasley D (2011) Role of toll-like receptor 4 in intimal foam cell accumulation in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 31:50–57PubMedCrossRefGoogle Scholar
  114. 114.
    Shaw JA, Bobik A, Murphy A, Kanellakis P, Blombery P, Mukhamedova N, Woollard K, Lyon S, Sviridov D, Dart AM (2008) Infusion of reconstituted high-density lipoprotein leads to acute changes in human atherosclerotic plaque. Circ Res 103:1084–1091PubMedCrossRefGoogle Scholar
  115. 115.
    Heller EA, Liu E, Tager AM, Yuan Q, Lin AY, Ahluwalia N, Jones K, Koehn SL, Lok VM, Aikawa E, Moore KJ, Luster AD, Gerszten RE (2006) Chemokine CXCL10 promotes atherogenesis by modulating the local balance of effector and regulatory T cells. Circulation 113:2301–2312PubMedCrossRefGoogle Scholar
  116. 116.
    Match F, Sauty A, Iarossi AS, Sukhova GK, Neote K, Libby P, Luster AD (1999) Differential expression of three T lymphocyte-activating CXC chemokines by human atheroma-associated cells. J Clin Investig 104:1041–1050CrossRefGoogle Scholar
  117. 117.
    Van Wanrooij EJA, De Jager SCA, Van Es T, De Vos P, Birch HL, Owen DA, Watson RJ, Biessen EAL, Chapman GA, Van Berkel TJC, Kuiper J (2008) CXCR3 antagonist NBI-74330 attenuates atherosclerotic plaque formation in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 28:251–257PubMedCrossRefGoogle Scholar
  118. 118.
    Veillard NR, Steffens S, Pelli G, Lu B, Kwak BR, Gerard C, Charo IF, Mach F (2005) Differential influence of chemokine receptors CCR2 and CXCR3 in development of atherosclerosis in vivo. Circulation 112:870–878PubMedCrossRefGoogle Scholar
  119. 119.
    Mach F, Schönbeck U, Sukhova GK, Bourcier T, Bonnefoy JY, Pober JS, Libby P (1997) Functional CD 40 Ligand is expressed on human 50. Vascular endothelial cells, smooth muscle cells, and macrophages: implications for CD40-CD40 ligand signaling in atherosclerosis. Proc Natl Acad Sci USA 94:1931–1936PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Schönbeck U, Mach F, Sukhova GK, Herman M, Graber P, Kehry MR, Libby P (2000) CD40 ligation induces tissue factor expression in human vascular smooth muscle cells. Am J Pathol 156:7–14PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Yan F, Polk DB (2011) Probiotics and immune health. Curr Opin Gastroenterol 27:496–501PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Remely M, Aumuellera E, Merolda C, Dworzaka S, Hippea B, Zannera J, Pointnera A, Brathb H, Haslberger AG (2014) Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene 1(537):85–92CrossRefGoogle Scholar
  123. 123.
    Cani PD, Joly E, Horsmans Y, Delzenne NM (2006) Oligofructose promotes satiety in healthy human: a pilot study. Eur J Clin Nutr 60:567–572PubMedCrossRefGoogle Scholar
  124. 124.
    Ten Bruggencate SJ, Bovee Oudenhoven IM, Lettink Wissink ML, Van der Meer R (2005) Dietary fructooligosaccharides increase permeability in rats. J Nutr 135:837–842PubMedGoogle Scholar
  125. 125.
    Neyrinck AM, Delzenne NM (2010) Potential interest of gut microbial changes induced by non-digestible carbohydrates of wheat in the management of obesity and related disorders. Curr Opin Clin Nutr Metab Care 2010(13):722–728CrossRefGoogle Scholar
  126. 126.
    Verhoef SP, Meyer D, Westerterp KR (2011) Effects of oligofructose on appetite profile, glucagon-like peptide 1 and peptide YY3-36 concentrations and energy intake. Br J Nutr 106:1757–1762PubMedCrossRefGoogle Scholar
  127. 127.
    Parnell JA, Reimer RA (2009) Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr 89:1751–1759PubMedCrossRefGoogle Scholar
  128. 128.
    Takemura N, Okubo T, Sonoyama K (2010) Lactobacillus plantarum strain No. 14 reduces adipocyte size in mice fed high-fat diet. Exp Biol Med (Maywood) 235:849–856CrossRefGoogle Scholar
  129. 129.
    Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378PubMedCrossRefGoogle Scholar
  130. 130.
    OʼToole PW, Cooney JC (2008) Probiotic bacteria influence the composition and function of the intestinal microbiota. Interdiscipl Perspect Infect Dis 2008:175285Google Scholar
  131. 131.
    Roessler A, Forssten SD, Glei M, Ouwehand AC, Jahreis G (2011) The effect of probiotics on faecal microbiota and genotoxic activity of faecal water in patients with atopic dermatitis: a randomized, placebo-controlled study. Clin Nutr 2011(31):22–29Google Scholar
  132. 132.
    Eun CS, Han DS, Lee SH, Jeon YC, Sohn JH, Kim YS, Lee J (2007) Probiotics may reduce inflammation by enhancing peroxisome proliferator activated receptor gamma activation in HT-29 cells. Korean J Gastroenterol 49:139–146PubMedGoogle Scholar
  133. 133.
    Anderson RC, Cookson AL, McNabb WC, Kelly WJ, Roy NC (2010) Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function. FEMS Microbiol Lett 309:184–192PubMedGoogle Scholar
  134. 134.
    Ukena SN, Singh A, Dringenberg U, Engelhardt R, Seidler U, Hansen W, Bleich A, Bruder D, Franzke A, Rogler G, Suerbaum S, Buer J, Gunzer F, Westendorf AM (2007) Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS One 2, e1308PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Putaala H, Salusjarvi T, Nordstrom M, Saarinen M, Ouwehand AC, Hansen EB, Rautonen N (2008) Effect of four probiotic strains and Escherichia coli O157:H7 on tight junction integrity and cyclo-oxygenase expression. Res Microbiol 159:692–698PubMedCrossRefGoogle Scholar
  136. 136.
    Wells JM, Konstaninov S, Konings I, Karczewski J (2011) Effects of probiotic and commensals on epithelial barrier function. Int J Probiot Prebiot 2008 3(3):127–132Google Scholar
  137. 137.
    Ismail B, Nampoothiri KM (2010) Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC9510. Arch Microbiol 192:1049–1057PubMedCrossRefGoogle Scholar
  138. 138.
    Vinderola G, Perdigon G, Duarte J, Farnworth E, Matar C (2006) Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 36:254–260PubMedCrossRefGoogle Scholar
  139. 139.
    Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M (2011) Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun 25:397–407PubMedCrossRefGoogle Scholar
  140. 140.
    Lawson RE, Moss AR, Givens DI (2001) The role of dairy products in supplying conjugated linoleic acid to man’s diet: a review. Nutr Res Rev 1(4):153–172CrossRefGoogle Scholar
  141. 141.
    Ewaschuk JB, Walker JW, Diaz H, Madsen KL (2006) Bioproduction of conjugated linoleic acid by probiotic bacteria occurs in vitro and in vivo in mice. J Nutr 136:1483–1487PubMedGoogle Scholar
  142. 142.
    Nakamura YK, Omaye ST (2009) Conjugated linoleic acid isomers’ roles in the regulation of PPARγ and NF-кBDNA binding and subsequent expression of antioxidant enzymes in human umbilical vein endothelial cells. Nutrition 25:800–811PubMedCrossRefGoogle Scholar
  143. 143.
    Nakamura YK, Dubick MA, Omaye ST (2012) Modulation of oxidative stress by gamma-glutamylcysteine (GGC) and conjugated linoleic acid (CLA) in human umbilical vein endothelial cells. Food Chem Toxicol 50:1854–1859PubMedCrossRefGoogle Scholar
  144. 144.
    Nakamura YK, Omaye ST (2010) Lipophilic compound-mediated gene expression and implication for intervention in reactive oxygen species (ROS)-related diseases: mini-review. Nutrients 2:725–736PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Bassaganya-Riera J, Viladomiu M, Pedradosa M, De Simone C, Carbo A, Shaykhutdinov R, Jobin C, Arthur JC, Corl BA, Vogel H, Storr M, Hontecillas R (2012) Probiotic bacteria produce conjugated linoleic acid locally in the gut that targets macrophage PPARγ to suppress colitis. PLoS One 7, e31238PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Kennedy A, Martinez K, Schmidt S, Mandrup S, Lapoint K, McIntosh MK (2010) Antiobesity mechanisms of action of conjugated linoleic acid. J Nutr Biochem 21:171–179PubMedCrossRefGoogle Scholar
  147. 147.
    Whigham LD, Watras AC, Schoeller DA (2007) Efficacy of conjugated linoleic acid for reducing fat mass: a meta-analysis in humans. Am J Clin Nutr 85:1203–1211PubMedGoogle Scholar
  148. 148.
    Pakkanen R, Aalto J (1997) Growth factors and antimicrobial factors of bovine colostrum. Int Dairy J 7:285–297CrossRefGoogle Scholar
  149. 149.
    Zaczyńska E, Kocięba M, Śliwińska E, Zimecki M (2014) Bovine lactoferrin enhances proliferation of human peripheral blood lymphocytes and induces cytokine production in whole blood cultures. Adv Clin Exp Med 6(23):871–876CrossRefGoogle Scholar
  150. 150.
    Hagiwara K, Kataoka S, Yamanaka H, Kirisawa R, Iwai H (2000) Detection of cytokines in bovine colostrum. Vet Immunol Immunopathol 76:183–190PubMedCrossRefGoogle Scholar
  151. 151.
    Rump JA, Arndt R, Arnold A, Bendick C, Dichtelmuller H, Franke M, Helm EB, Jager H, Kampmann B, Kolb P, Kreuz W, Lissner R, Meigel W, Ostendorf P, Peter HH, Plettenberg A, Schedel I, Stellbrink HW, Stephan W (1992) Treatment of diarrhoea in human immunodeficiency virus-infected patients with immunoglobulins from bovine colostrum. Clin Investigator 70:588–594CrossRefGoogle Scholar
  152. 152.
    Elfstrand L, Lindmark-Mansson H, Paulsson M, Nyberg L, Àkesson B (2002) Immunoglobulins, growth factors and growth hormone in bovine colostrum and the effects of processing. Int Dairy J 12:879–887CrossRefGoogle Scholar
  153. 153.
    Kim J, Jeon W, Chun H, Kim Y, Yun J (2004) Effects of bovine colostrum in diclofenac induced gut injured rat model. Korean J Med 67:49–57Google Scholar
  154. 154.
    Playford RJ, MacDonald CE, Calnan DP, Floyd DN, Podas T, Johnson W, Wicks AC, Bashir O, Marchbank T (2001) Co-administration of the health food supplement, bovine colostrum, reduces the acute non-steroidal anti-inflammatory drug-induced increase in intestinal permeability. Clin Sci 100:627–633PubMedCrossRefGoogle Scholar
  155. 155.
    Playford RJ (1995) Leading article: peptides and gastrointestinal mucosal integrity. Gut 37:595–597PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Marchbank T, Playford RJ (1998) Bovine colostrum or TGF (a major bioactive constituent of colostrum) are prophylactic against indomethacin induced injury. Gut 42 [Suppl]:A68Google Scholar
  157. 157.
    Shing YW, Klagsbrun M (1987) Purification and characterization of a bovine colostrum-derived growth factor. Mol Endocrinol 1:335–338PubMedCrossRefGoogle Scholar
  158. 158.
    Srivastava MD, Sahai Srivastava BI (1999) Soluble Fas and soluble Fas ligand proteins in human milk: possible significance in the development of immunological tolerance. Scand J Immunol 49:51–54PubMedCrossRefGoogle Scholar
  159. 159.
    Cardani D (2014) Effetti del colostro noni sul turnover delle cellule epiteliali, sugli stati infiammatori e sull’integrità dei sistemi giunzionali della mucosa intestinale. Minerva Gastroenterol Dietol 60(1):71–78PubMedGoogle Scholar
  160. 160.
    Marc RJ, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122CrossRefGoogle Scholar
  161. 161.
    Wilmore DW, Smith RJ, OʼDwyer ST, Jacobs DO, Ziegler TR, Wang XD (1988) The gut: a central organ after surgical stress. Surgery 104:917–923PubMedGoogle Scholar
  162. 162.
    Li N, Lewis P, Samuelson D, Liboni K, Neu J (2004) Glutamine regulates Caco-2 cell tight junction proteins. Am J Physiol Gastrointest Liver Physiol 287:G726–G733PubMedCrossRefGoogle Scholar
  163. 163.
    Hulsewe KW, van der Hulst RW, van Acker BA, von Meyenfeldt MF, Soeters PB (2004) Inflammation rather than nutritional depletion determines glutamine concentrations and intestinal permeability. Clin Nutr 23:1209–1216PubMedCrossRefGoogle Scholar
  164. 164.
    Hond ED, Peeters M, Hiele M, Bulteel V, Ghoos Y, Rutgeerts P (1999) Effect of glutamine on the intestinal permeability changes induced by indomethacin in humans. Aliment Pharmacol Ther 13:679–685PubMedCrossRefGoogle Scholar
  165. 165.
    Souba WW (1991) Glutamine: a key substrate for the splanchnic bed. Ann Rev Nutr 11(285):308Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.BresciaItaly

Personalised recommendations