Skip to main content

Biomedical Devices: Materials, Fabrication and Control

  • 162 Accesses

Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA,volume 82)

Abstract

In this chapter, we present an overview of materials used in rapid prototyping of biomedical devices, with their pros and cons, which are later used for implants of robotic prosthetic devices. Materials used in medical devices must meet strict performance requirements through all their life cycle, design, manufacturing, packaging, shipping, use and end use. The selection of materials in the biomedical field is strongly influenced by the application. In implants, the used materials must be corrosion resistant, biocompatible, bioactive, non-toxic and osseointegrated, with good mechanical strength and wear resistance, because this material will be in contact with body fluids. A material with those characteristics is considered a biomaterial. In the case of prosthesis, the selection of structural materials is focused on maximizing the strength/weight ratio of the overall prosthesis. Another aspect is manufacturability because the implant or prosthesis has to be cost-effective. There is a big number of materials to choose from, and each individual has particular needs. According to their chemical composition, the materials used in medical applications could be classified as metals, polymers, ceramics and composite materials.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-40003-7_9
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-40003-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   129.00
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    Permanent character, capable to substitute in partial or total form organs and tissue damaged or destroyed.

  2. 2.

    Temporal or provisional character with an adequate functionality during a limited time, necessary to solve the problem.

References

  1. Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10(2):S96–S101

    Google Scholar 

  2. Ryan G, Pandit A, Apatsidis DP (2006) Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27(13):2651–2670

    Google Scholar 

  3. Geetha Ma, Singh AK, Asokamani Ra, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Prog Mater Sci 54(3):397–425

    Google Scholar 

  4. Aguilar C, Guerra C, Lascano S, Guzman D, Rojas PA, Thirumurugan M, Bejar L, Medina A (2016) Synthesis and characterization of ti-ta-nb-mn foams. Mater Sci Eng C 58:420–431

    CrossRef  Google Scholar 

  5. Boutin P (2014) Arthroplastie totale de la hanche par prothese en alumine frittée. etude expérimentale et premieres applications cliniques. Revue de Chirurgie Orthopédique et Traumatologique, 100(1):14–21

    Google Scholar 

  6. Garino JP (2011) Ceramic hip replacement history. In: Seminars in arthroplasty, vol 22. WB Saunders, pp 214–217

    Google Scholar 

  7. Lee J-H (2014) Accelerated techniques for a post and core and a crown restoration with intraoral digital scanners and CAD/CAM and rapid prototyping. J Prosthet Dent 112(5):1024–1029

    CrossRef  Google Scholar 

  8. Niinomi M, Hattori T, Kasuga T, Fukui H (2005) Titanium and its alloys

    Google Scholar 

  9. Cipriani C, Controzzi M, Chiara Carrozza M (2011) The smarthand transradial prosthesis. J Neuroeng Rehabil 8(1):29

    Google Scholar 

  10. Kumar N, Arora NC, Datta B (2014) Bearing surfaces in hip replacement-evolution and likely future. Med J Armed Forces India 70(4):371–376

    Google Scholar 

  11. D’Antonio JA, Sutton K (2009) Ceramic materials as bearing surfaces for total hip arthroplasty. J Am Acad Orthop Surg 17(2):63–68

    Google Scholar 

  12. Tateiwa T, Clarke IC, Williams PA, Garino J, Manaka M, Shishido T, Yamamoto K, Imakiire A (2008) Ceramic total hip arthroplasty in the united states: safety and risk issues revisited. Am J Orthop 37(2):E26–E31

    Google Scholar 

  13. Chenglin C, Jingchuan Z, Zhongda Y, Shidong W (1999) Hydroxyapatite-ti functionally graded biomaterial fabricated by powder metallurgy. Mater Sci Eng A 271(1):95–100

    CrossRef  Google Scholar 

  14. Ruys AJ, Wei M, Sorrell CC, Dickson MR, Brandwood A, Milthorpe BK (1995) Sintering effects on the strength of hydroxyapatite. Biomaterials 16(5):409–415

    CrossRef  Google Scholar 

  15. Tampieri A, Celotti G, Sprio S, Mingazzini C (2000) Characteristics of synthetic hydroxyapatites and attempts to improve their thermal stability. Mater Chem Phys 64(1):54–61

    CrossRef  Google Scholar 

  16. Chang B-S, Hong K-S, Youn H-J, Ryu H-S, Chung S-S, Park K-W et al (2000) Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials 21(12):1291–1298

    CrossRef  Google Scholar 

  17. Brossa F, Cigada A, Chiesa R, Paracchini L, Consonni C (1994) Post-deposition treatment effects on hydroxyapatite vacuum plasma spray coatings. J Mater Sci Mater Med 5(12):855–857

    CrossRef  Google Scholar 

  18. Yang CY, Wang BC, Chang E, Wu JD (1995) The influences of plasma spraying parameters on the characteristics of hydroxyapatite coatings: a quantitative study. J Mater Sci Mater Med 6(5):249–257

    CrossRef  Google Scholar 

  19. Mottaghitalab F, Hosseinkhani H, Ali Shokrgozar M, Mao C, Yang M, Farokhi M (2015) Silk as a potential candidate for bone tissue engineering. J Control Release

    Google Scholar 

  20. Nair LS, Laurencin CT (2006) Polymers as biomaterials for tissue engineering and controlled drug delivery. In: Tissue engineering I. Springer, pp 47–90

    Google Scholar 

  21. Fallahiarezoudar E, Ahmadipourroudposht M, Idris A, Mohd Yusof N (2015) A review of: application of synthetic scaffold in tissue engineering heart valves. Mater Sci Eng C 48:556–565

    Google Scholar 

  22. Ilagan R, Rapoport S, Shepherd B, Presnell S (2016) Chapter 41 - tissue engineering through additive manufacturing: hope for a bioengineered kidney? In: Little MH (ed) Kidney development, disease, repair and regeneration. Academic Press, San Diego, pp 555–568

    CrossRef  Google Scholar 

  23. Luximon A (2013) Handbook of footwear design and manufacture. Elsevier

    Google Scholar 

  24. Hull D, Clyne TW (1996) An introduction to composite materials. Cambridge university press

    Google Scholar 

  25. Nolan L (2008) Carbon fibre prostheses and running in amputees: a review. Foot Ankle Surg 14(3):125–129

    CrossRef  Google Scholar 

  26. Ciocca L, Marchetti C, Mazzoni S, Baldissara P, Gatto MRA, Cipriani R, Scotti R, Tarsitano A (2015) Accuracy of fibular sectioning and insertion into a rapid-prototyped bone plate, for mandibular reconstruction using cad-cam technology. J Cranio-Maxillofac Surg 43(1):28–33

    CrossRef  Google Scholar 

  27. Tarsitano A, Mazzoni S, Cipriani R, Scotti R, Marchetti C, Ciocca L (2014) The cad-cam technique for mandibular reconstruction: an 18 patients oncological case-series. J Cranio-Maxillofac Surg 42(7):1460–1464

    CrossRef  Google Scholar 

  28. Jin-Song Hou M, Chen C-BP, Wang M, Wang J-G, Zhang B, Tao Q, Wang C, Huang H-Z (2012) Application of cad/cam-assisted technique with surgical treatment in reconstruction of the mandible. J Cranio-Maxillofac Surg 40(8):e432–e437

    CrossRef  Google Scholar 

  29. Gibson I (2006) Advanced manufacturing technology for medical applications: reverse engineering, software conversion and rapid prototyping. Wiley

    Google Scholar 

  30. Ng J, Ruse D, Wyatt C (2014) A comparison of the marginal fit of crowns fabricated with digital and conventional methods. J Prosthet Dent 112(3):555–560

    CrossRef  Google Scholar 

  31. Ender A, Mehl A (2010) Full arch scans: conventional versus digital impressions-an in-vitro study. Int J Comput Dent 14(1):11–21

    Google Scholar 

  32. Seelbach P, Brueckel C, Wöstmann B (2013) Accuracy of digital and conventional impression techniques and workflow. Clin Oral Investig 17(7):1759–1764

    CrossRef  Google Scholar 

  33. Tidehag P, Ottosson K, Sjögren G (2014) Accuracy of ceramic restorations made using an in-office optical scanning technique: an in vitro study. Oper Dent 39(3):308–316

    Google Scholar 

  34. Wismeijer D, Mans R, Genuchten M, Reijers HA (2014) Patients’ preferences when comparing analogue implant impressions using a polyether impression material versus digital impressions (intraoral scan) of dental implants. Clin Oral Implants Res 25(10):1113–1118

    Google Scholar 

  35. Lee SJ, Gallucci GO (2013) Digital vs. conventional implant impressions: efficiency outcomes. Clin Oral Implants Res 24(1):111–115

    Google Scholar 

  36. van Noort R (2012) The future of dental devices is digital. Dent Mater 28(1):3–12

    CrossRef  Google Scholar 

  37. Pivec R, Johnson AJ, Mears SC, Mont MA (2012) Hip arthroplasty. The Lancet 380(9855):1768–1777

    CrossRef  Google Scholar 

  38. Berstock JR, Blom AW, Beswick AD (2014) A systematic review and meta-analysis of the standard versus mini-incision posterior approach to total hip arthroplasty. J Arthroplast 29(10):1970–1982

    Google Scholar 

  39. Zhang Y, Zhu J, Wang Z, Zhou Y, Zhang X (2015) Constructing a 3d-printable, bioceramic sheathed articular spacer assembly for infected hip arthroplasty. J Med Hypotheses Ideas 9(1):13–19

    CrossRef  Google Scholar 

  40. Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, Kates SL, Awad HA (2014) 3d printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35(13):4026–4034

    Google Scholar 

  41. Xu J, Li D, Ma R-f, Barden B, Ding Y (2015) Application of rapid prototyping pelvic model for patients with ddh to facilitate arthroplasty planning: a pilot study. J Arthroplast

    Google Scholar 

  42. Murphy SV, Atala A (2014) 3d bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    Google Scholar 

  43. Ingber DE, Mow VC, Butler D, Niklason L, Huard J, Mao J, Yannas I, Kaplan D, Vunjak-Novakovic G (2006) Tissue engineering and developmental biology: going biomimetic. Tissue Eng 12(12):3265–3283

    Google Scholar 

  44. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30(12):2164–2174

    Google Scholar 

  45. Malda J, Visser J, Melchels FP, Jüngst T, Hennink WE, Dhert WJA, Groll J, Hutmacher DW (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25(36):5011–5028

    Google Scholar 

  46. Jana S, Lerman A (2015) Bioprinting a cardiac valve. In: Biotechnology advances

    Google Scholar 

  47. Li Z, Kawashita M (2011) Current progress in inorganic artificial biomaterials. J Artif Organs 14(3):163–170

    CrossRef  Google Scholar 

  48. Gonçalves A, Marcos-Alberca P, Almeria C, Feltes G, Ana Hernández-Antolín R, Rodríguez E, Luis Rodrigo J, Cobiella J, Maroto L, Silva Cardoso JC et al (2013) Quality of life improvement at midterm follow-up after transcatheter aortic valve implantation. Int J Cardiol 162(2):117–122

    Google Scholar 

  49. Padala M, Brent Keeling W, Guyton RA, Thourani VH (2011) Innovations in therapies for heart valve disease. Circ J 75(5):1028–1041

    Google Scholar 

  50. Wüst S, Müller R, Hofmann S (2011) Controlled positioning of cells in biomaterials-approaches towards 3d tissue printing. J Funct Biomater 2(3):119–154

    CrossRef  Google Scholar 

  51. Duan B, Kapetanovic E, Hockaday LA, Butcher JT (2014) Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater 10(5):1836–1846

    Google Scholar 

  52. Kamen D (2008) Dean kamen’s luke arm prosthesis readies for clinical trials

    Google Scholar 

  53. Belter JT, Segil JL, Dollar AM, Weir RF (2013) Mechanical design and performance specifications of anthropomorphic prosthetic hands: a review. J Rehabil Res Dev 50(5):599–618

    Google Scholar 

  54. Bojsen-Møller F, Lamoreux L (1979) Significance of free dorsiflexion of the toes in walking. Acta Orthop 50(4):471–479

    CrossRef  Google Scholar 

  55. Zheng H, Shen X (2015) Design and control of a pneumatically actuated transtibial prosthesis. J Bionic Eng 12(2):217–226

    CrossRef  Google Scholar 

  56. Cherelle P, Grosu V, Matthys A, Vanderborght B, Lefeber D (2014) Design and validation of the ankle mimicking prosthetic (amp-) foot 2.0. IEEE Trans Neural Syst Rehabil Eng 22(1):138–148

    Google Scholar 

  57. Madusanka DGK, Wijayasingha LNS, Sanjeevan K, Ahamed MAR, Edirisooriya JCW, Gopura RARC (2014) A 3dof transtibial robotic prosthetic limb. In: 2014 7th international conference on information and automation for sustainability (ICIAfS). IEEE, pp 1–6

    Google Scholar 

  58. Winter DA (1991) Biomechanics and motor control of human gait: normal, elderly and pathological. Waterloo Biomechanics

    Google Scholar 

  59. Hafner BJ, Sanders JE, Czerniecki JM, Fergason J (2002) Transtibial energy-storage-and-return prosthetic devices: a review of energy concepts and a proposed nomenclature. J Rehabil Res Dev 39(1):1–12

    Google Scholar 

  60. Cherelle P, Mathijssen G, Wang Q, Vanderborght B, Lefeber D (2014) Advances in propulsive bionic feet and their actuation principles. Adv Mech Eng 6:984046

    Google Scholar 

  61. cherelle2014 R, Desomer A, Lenaerts G, Beyl P, Van Damme M, Vanderborght B, Vanderniepen I, Van Der Perre G, Lefeber D (2008) From conventional prosthetic feet to bionic feet: a review study. In: 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. IEEE, pp 49–54

    Google Scholar 

  62. Zhu J, Wang Q, Wang L (2014) Effects of toe stiffness on ankle kinetics in a robotic transtibial prosthesis during level-ground walking. Mechatronics 24(8):1254–1261

    CrossRef  Google Scholar 

  63. Abd Razak NA, Abu Osman NA, Kamyab M, Wan Abas WAB, Gholizadeh H (2014) Satisfaction and problems experienced with wrist movements: comparison between a common body-powered prosthesis and a new biomechatronics prosthesis. Am J Phys Med Rehabil 93(5):437–444

    Google Scholar 

  64. Tan HZ, Srinivasan MA, Eberman B, Cheng B (1994) Human factors for the design of force-reflecting haptic interfaces. Dyn Syst Control 55(1):353–359

    Google Scholar 

  65. Resnik L, Klinger SL, Etter K (2014) The deka arm: its features, functionality, and evolution during the veterans affairs study to optimize the deka arm. Prosthet Orthot Int 38(6):492–504

    Google Scholar 

  66. Resnik L, Lieberman Klinger S, Etter K (2014) User and clinician perspectives on deka arm: results of va study to optimize deka arm. J Rehabil Res Dev 51(1):27–38

    Google Scholar 

  67. Ortiz-Catalan M, Brånemark R, Håkansson B, Delbeke J (2012) On the viability of implantable electrodes for the natural control of artificial limbs: review and discussion. BioMed Eng OnLine 11(1)

    Google Scholar 

  68. Young AJ, Kuiken TA, Hargrove LJ (2014) Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. J Neural Eng 11(5):2244–2252

    CrossRef  Google Scholar 

  69. Hargrove LJ (2005) A Comparison of surface and intramuscular myoelectric signal classification. PhD thesis, University of New Brunswick

    Google Scholar 

  70. Tucker MR, Olivier J, Pagel A, Bleuler H, Bouri M, Lambercy O, Millán JdR, Riener R, Vallery H, Gassert R (2015) Control strategies for active lower extremity prosthetics and orthotics: a review. J Neuroeng Rehabil 12(1):1

    Google Scholar 

  71. Scheme E, Englehart K (2011) Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J Rehabil Res Dev 48(6):643

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheila Lascano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Lascano, S., Estay, D. (2022). Biomedical Devices: Materials, Fabrication and Control. In: Auat, F., Prieto, P., Fantoni, G. (eds) Rapid Roboting. Intelligent Systems, Control and Automation: Science and Engineering, vol 82. Springer, Cham. https://doi.org/10.1007/978-3-319-40003-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40003-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40001-3

  • Online ISBN: 978-3-319-40003-7

  • eBook Packages: EngineeringEngineering (R0)