Skip to main content

Prototyping the Brain of a Robot

  • Chapter
  • First Online:
Book cover Rapid Roboting

Abstract

In this chapter, we will introduce several key points of this new discipline with a particular focus on human-inspired cognitive systems. We will provide several examples of well-known developed robots, to finally reach a detailed description of a special case study: F.A.C.E., Facial Automaton for Conveying Emotions, which is a highly expressive humanoid robot with a bio-inspired cognitive system. At the end of the chapter, we will briefly discuss the future perspective about this branch of science and its potential merging with the IoT, giving our vision of what could happen in a not-too-distant future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.yarp.it/.

  2. 2.

    http://www.ros.org/.

  3. 3.

    http://www.hansonrobotics.com/.

  4. 4.

    https://developer.microsoft.com/en-us/windows/kinect.

  5. 5.

    http://easel.upf.edu/.

References

  1. Reeves B, Nass C (1996) The media equation: how people treat computers, television, and new media like real people and places. Cambridge University Press, New York, NY, USA

    Google Scholar 

  2. Hutson, M.: The 7 laws of magical thinking: how irrational beliefs keep us happy, healthy, and sane. Penguin (2012)

    Google Scholar 

  3. Breazeal, C., Scassellati, B.: f4 challenges in building robots that imitate people. Imitation in Animals and Artifacts 363 (2002)

    Google Scholar 

  4. Picard RW (1997) Affective computing. The MIT Press, Cambridge

    Google Scholar 

  5. Brooks RA, Breazeal C, Marjanovic M, Scassellati B, Williamson MM (1999) The cog project: Building a humanoid robot. In: Nehaniv C (ed) Computation for metaphors, analogy, and agents, vol 1562. Lecture notes in computer science. Springer, Berlin, Heidelberg, pp 52–87

    Google Scholar 

  6. Damasio A (1994) Descartes’ error: emotion, reason, and the human brain. Grosset/Putnam, New York

    Google Scholar 

  7. Arkin RC, Mackenzie DC (1994) Planning to behave: a hybrid deliberative/reactive robot control architecture for mobile manipulation. Int Symp Robot Manuf Maui, H I:5–12

    Google Scholar 

  8. Murphy RR (2000) Introduction to AI robotics, 1st edn. MIT Press, Cambridge, MA, USA

    Google Scholar 

  9. Nilsson, N.J.: Shakey the robot. Technical Report 323, AI Center, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025 (1984)

    Google Scholar 

  10. Brooks R (1986) A robust layered control system for a mobile robot. IEEE J Robot Autom 2:14–23

    Article  Google Scholar 

  11. Arkin, R.C.: Behavior-based robotics. MIT Press (1998)

    Google Scholar 

  12. Giarratano JC, Riley GD (2005) Expert systems: principles and programming. Brooks/Cole Publishing Co., Pacific Grove, CA, USA

    Google Scholar 

  13. Jackson P (1986) Introduction to expert systems. Addison-Wesley Pub. Co., Reading, MA

    Google Scholar 

  14. Giarratano JC, Riley G (1998) Expert Systems, 3rd edn. PWS Publishing Co., Boston, MA, USA

    Google Scholar 

  15. Leondes CT (2001) Expert systems, six-volume set: the technology of knowledge management and decision making for the 21st century. Academic

    Google Scholar 

  16. Shortliffe EH, Davis R, Axline SG, Buchanan BG, Green CC, Cohen SN (1975) Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the mycin system. Comput Biomed Res 8:303–320

    Article  Google Scholar 

  17. Lindsay RK, Buchanan BG, Feigenbaum EA, Lederberg J (1993) Dendral: a case study of the first expert system for scientific hypothesis formation. Artif Intell 61:209–261

    Article  Google Scholar 

  18. Rodriguez-Andina JJ, Moure MJ, Valdes MD (2007) Features, design tools, and application domains of fpgas. IEEE Trans Ind Electron 54:1810–1823

    Article  Google Scholar 

  19. Fasang PP (2009) Prototyping for industrial applications [industry forum]. IEEE Ind Electron Mag 3:4–7

    Article  Google Scholar 

  20. Salih JEM, Rizon M, Yaacob S, Adom AH, Mamat MR (2006) Designing omni-directional mobile robot with mecanum wheel. Am J Appl Sci 3:1831–1835

    Article  Google Scholar 

  21. Magnenat S, Rétornaz P, Noris B, Mondada F (2008) Scripting the swarm: event-based control of microcontroller-based robots. In: SIMPAR 2008 workshop proceedings

    Google Scholar 

  22. Dorigo M, Floreano D, Gambardella LM, Mondada F, Nolfi S, Baaboura T, Birattari M, Bonani M, Brambilla M, Brutschy A et al (2013) Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robot Autom Mag 20:60–71

    Article  Google Scholar 

  23. Metta G, Fitzpatrick P, Natale L (2006) YARP: Yet Another Robot Platform. Int J Adv Rob Syst 3:43–48

    Article  Google Scholar 

  24. Quigley M, Conley K, Gerkey BP, Faust J, Foote T, Leibs J, Wheeler R, Ng AY (2009) Ros: an open-source robot operating system. In: ICRA workshop on open source software

    Google Scholar 

  25. Natale L, Nori F, Metta G, Fumagalli M, Ivaldi S, Pattacini U, Randazzo M, Schmitz A, Sandini G (2013) The icub platform: A tool for studying intrinsically motivated learning. In: Baldassarre G, Mirolli M (eds) Intrinsically motivated learning in natural and artificial systems. Springer, Berlin, Heidelberg, pp 433–458

    Google Scholar 

  26. Mazzei D, Lazzeri N, Hanson D, De Rossi D (2012) Hefes: a hybrid engine for facial expressions synthesis to control human-like androids and avatars. In: 2012 4th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob). IEEE, pp 195–200

    Google Scholar 

  27. Glas D, Satake S, Kanda T, Hagita N (2011) An interaction design framework for social robots. In: Proceedings of robotics: science and systems, Los Angeles, CA, USA

    Google Scholar 

  28. Breazeal C (2003) Emotion and sociable humanoid robots. Int J Hum Comput Stud 59:119–155

    Article  Google Scholar 

  29. Breazeal C (2005) Socially intelligent robots. Interactions 12:19–22

    Article  Google Scholar 

  30. Vernon D, Metta G, Sandini G (2007) The icub cognitive architecture: Interactive development in a humanoid robot. In: IEEE 6th international conference on development and learning. ICDL, pp 122–127

    Google Scholar 

  31. Vernon D, Sandini G (2010) Embodiment in cognitive systems: on the mutual dependence of cognition & robotics. In: Embodied Cognitive Systems. Gray, J. and Nefti-Meziani, S. pp 1–12

    Google Scholar 

  32. Qureshi F, Terzopoulos D, Gillett R (2004) The cognitive controller: a hybrid, deliberative/reactive control architecture for autonomous robots. In: Innovations in applied artificial intelligence. Springer, pp 1102–1111

    Google Scholar 

  33. Von Uexküll J (2014) Umwelt und innenwelt der tiere. Springer

    Google Scholar 

  34. Pfeifer R, Lungarella M, Iida F (2007) Self-organization, embodiment, and biologically inspired robotics. Science 318:1088–1093

    Google Scholar 

  35. Critchley HD, Wiens S, Rotshtein P, Öhman A, Dolan RJ (2004) Neural systems supporting interoceptive awareness. Nat Neurosci 7:189–195

    Article  Google Scholar 

  36. Parisi D (2011) The other half of the embodied mind. Embodied and grounded cognition

    Google Scholar 

  37. Bosse T, Jonker CM, Treur J (2008) Formalisation of damasio’s theory of emotion, feeling and core consciousness. Conscious Cognit 17:94–113

    Article  Google Scholar 

  38. Damasio A (2010) Self comes to mind : constructing the conscious brain, 1st edn. Pantheon Books, New York

    Google Scholar 

  39. Mazzei D, Cominelli L, Lazzeri N, Zaraki A, De Rossi D (2014) I-clips brain: a hybrid cognitive system for social robots. In: Biomimetic and biohybrid systems. Springer, pp 213–224

    Google Scholar 

  40. Zaraki A, Mazzei D, Giuliani M, De Rossi D (2014) Designing and evaluating a social gaze-control system for a humanoid robot. IEEE Trans Hum-Mach Syst PP: 1–12 (2014)

    Google Scholar 

  41. Russell JA (1980) The circumplex model of affect. J Pers Soc Psychol 39:1161–1178

    Article  Google Scholar 

  42. Mazzei D, Billeci L, Armato A, Lazzeri N, Cisternino A, Pioggia G, Igliozzi R, Muratori F, Ahluwalia A, De Rossi D (2010) The face of autism. In: The 19th IEEE international symposium on robot and human interactive communication (RO-MAN 2010). IEEE Computer Society publisher, pp 791–796

    Google Scholar 

  43. Cominelli L, Mazzei D, Pieroni M, Zaraki A, Garofalo R, De Rossi D (2015) Damasio’s somatic marker for social robotics: preliminary implementation and test. In: Biomimetic and biohybrid systems. Springer, pp 316–328

    Google Scholar 

  44. Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw 54:2787–2805

    Article  Google Scholar 

  45. Bell G, Hey T, Szalay A (2009) Beyond the data deluge. Science 323:1297–1298

    Article  Google Scholar 

  46. Hey AJ, Trefethen AE (2003) The data deluge: An e-science perspective. In Berman F, Fox GC, Hey AJG (eds) Grid computing - making the global infrastructure a reality. Wiley, pp 809–824 Chapter: 36

    Google Scholar 

  47. Anderson C (2008) The end of theory: The data deluge makes the scientific method obsolete

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Mazzei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mazzei, D., Cominelli, L., Lazzeri, N. (2022). Prototyping the Brain of a Robot. In: Auat, F., Prieto, P., Fantoni, G. (eds) Rapid Roboting. Intelligent Systems, Control and Automation: Science and Engineering, vol 82. Springer, Cham. https://doi.org/10.1007/978-3-319-40003-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40003-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40001-3

  • Online ISBN: 978-3-319-40003-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics