Skip to main content

Design of Mobile Robots

  • 154 Accesses

Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA,volume 82)


Virtual and physical rapid prototyping of mobile robots is often necessary not only in the development of research platforms, but also for validating commercial and customized mobile robot applications. The design of a robot involves specialized knowledge from mechanical, electrical and software engineering. Despite summarizing the wide variety of tools and knowledge is a challenging task, this chapter presents the main guidelines and recommendations for the design and rapid prototyping of mobile robots. The chapter reviews basic design rules, the fundamental robot components, the general hardware and software architecture. The discussion includes aspects that are key to the selection of those components that ensure the robot prototype meets the motion specifications, such as the selection of computing platforms, the main types of mechanical transmissions, efficiency issues, the role of bearings and other aspects concerning stability, overturning margins, controllability and the motion dynamics. Finally, all the concepts and guidelines are employed in the design of a skid-steer mobile robot, which is presented as an example of rapid mobile robot prototyping. A summary of the main conclusions and suggestions for further reading is presented in the last section.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-40003-7_4
  • Chapter length: 40 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-40003-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   129.00
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22


  1. Aguilera-Marinovic S, Torres-Torriti M, Cheein FA (2016) General dynamic model for skid-steer mobile manipulators with wheel-ground interactions. IEEE/ASME Trans Mechatron (99):1.

  2. Albano LD, Suh NP, Pecht M, Slocum A, Jakiela M, Lewis K, Mistree F, Rao JJ (1999) Mechanical engineering handbook. CRC Press LLC, Boca Raton, Chap Engineering Design, Chap, p 11

    Google Scholar 

  3. Angeles J (2014) Fundamentals of robotic mechanical systems, 4th edn. Mechanical engineering series (Book 124). Springer New York, Inc., Switzerland.

  4. Arai M, Tanaka Y, Hirose S, Kuwahara H, Tsukui S (2008) Development of souryu-iv and souryu-v: serially connected crawler vehicles for in-rubble searching operations. J Field Robot 25(1–2):31–65.

    CrossRef  Google Scholar 

  5. Auat-Cheein F, Scaglia G (2014) Trajectory tracking controller design for unmanned vehicles: a new methodology. J Field Robot 31(6):861–887.

    CrossRef  Google Scholar 

  6. Bernardi M, Bley H, Schmitt B (2004) Integrating a mechatronics-oriented development process into a development department. In: Proceedings of the 37th CIRP international seminar on manufaturing system. Budapest, Hungary, pp 265–270

    Google Scholar 

  7. Campion G, Chung W (2008) Springer handbook of robotics. Springer, Chap 17: Wheeled Robots, pp 391–409

    Google Scholar 

  8. Featherstone R (2008) Rigid body dynamics algorithms. Springer, New York, USA

    Google Scholar 

  9. Gausemeier J (2002) From mechatronic to self-optimization. In: Proceedings of the 20th CAD-FEM user meeting 2002.

  10. Jazar RN (2014) Vehicle dynamics, 2nd edn. Springer, New York, USA.

  11. Klafter RD, Chmielewski TA, Negin M (1989) Robotic engineering: an integrated approach. Prentice Hall

    Google Scholar 

  12. Kozlowski Krzysztof, Pazderski Dariusz (2004) Modeling and control of a 4-wheel skid-steering mobile robot. Int J Appl Math Comput Sci 14(4):477–496

    MathSciNet  MATH  Google Scholar 

  13. Luca AD, Oriolo G, Samson C (1998) Robot motion planning and control, Springer, Chap 4: feedback control of a nonholonomic car-like robot, pp 171–253

    Google Scholar 

  14. Luca AD, Oriolo G, Vendittelli M (2001) Ramsete: articulated and mobile robotics for services and technologies, Lecture notes in control and information sciences, vol 270, Springer, chap 8: control of wheeled mobile robots: an experimental overview, pp 181–226

    Google Scholar 

  15. Ma J, Luo J, Pu H, Peng Y, Xie S, Gu J (2014) Design, simulation and manufacturing of a tracked robot for nuclear accidents. In: 2014 IEEE international conference on robotics and biomimetics (ROBIO), pp 1828–1833.

  16. McComb G (2011) Robot builder’s bonanza. McGraw-Hill Education TAB

    Google Scholar 

  17. Mohammadpour E, Naraghi M, Gudarzi M (2010) Posture stabilization of skid steer wheeled mobile robots. In: 2010 IEEE conference on robotics automation and mechatronics (RAM), pp 163–169.

  18. Murphy RR, Kravitz J, Stover SL, Shoureshi R (2009) Mobile robots in mine rescue and recovery. IEEE Robot Autom Mag 16(2):91–103.

    CrossRef  Google Scholar 

  19. Oriolo G (2014) Encyclopedia of systems and control, Springer, chap wheeled robots, pp 1–9.

  20. Pahl G, Beitz W, Feldhusen J, Grote KH (2007) Engineering design, a systematic approach, 3rd edn. Springer

    Google Scholar 

  21. Rajamani R (2012) Vehicle Dynamics and Control, 2nd edn. Mechanical Engineering Series, Springer, New York, USA

    Google Scholar 

  22. Retamales F, Torres-Torriti M (2016) Ubibot telepresence mini-robot.

  23. Sensinger JW, Lipsey JH (2012) Cycloid versus harmonic drives for use in high ratio, single stage robotic transmissions. In: 2012 IEEE international conference on robotics and automation (ICRA), pp 4130–4135.

  24. Siciliano B, Khatib O (eds) (2008) Springer handbook of robotics. Springer, Berlin, Heidelberg

    Google Scholar 

  25. Siegwart R, Nourbakhsh IR, Scaramuzza D (2011) Introduction to autonomous mobile robots. The MIT Press, Intelligent Robotics and Autonomous Agents series

    Google Scholar 

  26. SRI International (1988) Robot design handbook. McGraw-Hill

    Google Scholar 

  27. Torres-Torriti M, Arredondo T, Castillo-Pizarro P (2014) Survey and comparative study of free simulation software for mobile robots. Robotica FirstView:1–32.,

  28. Ueda K, Guarnieri M, Hodoshima R, Fukushima EF, Hirose S (2010) Improvement of the remote operability for the arm-equipped tracked vehicle helios ix. In: 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 363–369.

  29. Ueda K, Guarnieri M, Inoh T, Debenest P, Hodoshima R, Fukushima EF, Hirose S (2011) Development of helios ix: an arm-equipped tracked vehicle. J Robot Mechatron 23(6):1031–1040

    Google Scholar 

  30. Warren JD, Adams J, Molle H (2011) Arduino robotics. Technology in Action, Apress

    Google Scholar 

  31. Wong JY (2008) Theory of ground vehicles

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Miguel Torres-Torriti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Torres-Torriti, M. (2022). Design of Mobile Robots. In: Auat, F., Prieto, P., Fantoni, G. (eds) Rapid Roboting. Intelligent Systems, Control and Automation: Science and Engineering, vol 82. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40001-3

  • Online ISBN: 978-3-319-40003-7

  • eBook Packages: EngineeringEngineering (R0)