Skip to main content

Printing 3D Electronics for Robotics

  • 199 Accesses

Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA,volume 82)

Abstract

With the current ability to print mechanical structures commercially, and with new enhanced fabrication technologies around the corner—currently being developed within research labs—soon, it will be possible to print most—if not all—of the robotics in a single non-assembly process (including more than just the structure). The Holy Grail for this comprehensive fabrication approach would be to design a robot in CAD, press print, and 5 hours later return to find a fully functional robot prepared to crawl, walk, or fly out of the 3D printer. We show several cases in which robotics experts used 3D printing as a central element in the design and fabrication of advanced robots.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-40003-7_3
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-40003-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   129.00
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Aguilera E, Ramos J, Espalin D, Cedillos F, Muse D, Wicker R, MacDonald E (2013) 3D printing of electro mechanical systems. In: Proceedings of the solid freeform fabrication symposium, pp 950–961

    Google Scholar 

  2. Balakrishnan PG, Ramesh R, Kumar TP (2006) Safety mechanisms in lithium-ion batteries. J Power Sources 155(2):401–414

    CrossRef  Google Scholar 

  3. Berggren M, Nilsson D, Robinson ND (2007) Organic materials for printed electronics. Nat Mater 6. https://doi.org/10.1038/nmat1817

  4. Clark JE, Cham JG, Bailey SA, Froehlich EM, Nahata PK, Full RJ, Cutkosky MR (2001) Biomimetic design and fabrication of a hexapedal running robot. In: IEEE international conference on robotics and automation, 2001. Proceedings 2001 ICRA, vol 4. IEEE, pp 3643–3649. https://doi.org/10.1109/robot.2001.933183

  5. Weiss LE, Merz R, Prinz F, Neplotnik G, Padmanabhan P, Schultz L, Ramaswami K (1997) Shape deposition manufacturing of heterogeneous structures. Nat Mater 16. https://doi.org/10.1016/s0278-6125(97)89095-4

  6. Espalin D, Muse DW, MacDonald E, Wicker RB (2014) 3D printing multifunctionality: structures with electronics. Int J Adv Manuf Technol 72. https://doi.org/10.1007/s00170-014-5717-7

  7. Gaikwad AM, Whiting GL, Steingart DA, Arias AC (2011) Highly flexible, printed alkaline batteries based on mesh-embedded electrodes. Adv Mater 23(29):3251–3255

    CrossRef  Google Scholar 

  8. Gaytan S, Cadena M, Karim H, Delfin D, Lin Y, Espalin D, MacDonald E, Wicker R (2015) Fabrication of barium titanate by binder jetting additive manufacturing technology. Ceram Int 41. https://doi.org/10.1016/j.ceramint.2015.01.108

  9. Gibson I, Stucker B, Rosen DW (2010) Additive manufacturing technologies. Springer

    Google Scholar 

  10. International A (2012) ASTM F2792-12a, standard terminology for additive manufacturing technologies. ASTM Int https://doi.org/10.1520/F2792-12A

  11. Kaltenbrunner M, Kettlgruber G, Siket C, Schwodiauer R, Bauer S (2010) Arrays of ultracompliant electrochemical dry gel cells for stretchable electronics. Adv Mater 22(18):2065–2067

    CrossRef  Google Scholar 

  12. Liang M, Yu X, Shemelya C, Roberson D, MacDonald E, Wicker R, Xin H (2014) Electromagnetic materials of artificially controlled properties for 3D printing applications. Antennas and propagation society international symposium (APSURSI). IEEE, pp 227–228

    Google Scholar 

  13. Liang M, Shemelya C, MacDonald E, Wicker R, Xin H (2015) 3D printed microwave patch antenna via fused deposition method and ultrasonic wire mesh embedding technique. IEEE Antennas Wirel Propag Lett 14:1346–1349

    CrossRef  Google Scholar 

  14. Lopes JA, MacDonald E, Wicker RB (2012) Integrating stereolithography and direct print technologies for 3D structural electronics fabrication. Rapid Prototyp J 18. https://doi.org/10.1108/13552541211212113

  15. Love LJ, Lind RF, Jansen JF (2009) Mesofluidic actuation for articulated finger and hand prosthetics. In: 2009 IEEE/RSJ international conference on intelligent robots and systems, pp 2586–2591. https://doi.org/10.1109/IROS.2009.5353919

  16. Ma RR, Odhner LU, Dollar AM (2013) A modular, open-source 3D printed underactuated hand. In: 2013 IEEE international conference on robotics and automation (ICRA). IEEE, pp 2737–2743

    Google Scholar 

  17. Macdonald E, Salas R, Espalin D, Perez M, Aguilera E, Muse D, Wicker RB (2014) 3D printing for the rapid prototyping of structural electronics. IEEE Access 2:234–242. https://doi.org/10.1109/ACCESS.2014.2311810

  18. Marshall WM, Stegeman JD, Zemba M, MacDonald E, Shemelya C, Wicker R, Kwas A, Kief C (2015) Using additive manufacturing to print a cubesat propulsion system. In: 51st AIAA/SAE/ASEE joint propulsion conference, p 4184

    Google Scholar 

  19. Mavroidis C, DeLaurentis KJ, Won J, Alam M (2001) Fabrication of non-assembly mechanisms and robotic systems using rapid prototyping. J Mech Des 123(4):516–524

    CrossRef  Google Scholar 

  20. Mireles J, Kim HC, Lee IH, Espalin D, Medina F, MacDonald E, Wicker R (2013) Development of a fused deposition modeling system for low melting temperature metal alloys. J Electron Packag 135(1):011008

    Google Scholar 

  21. Muth JT, Vogt DM, Truby RL, Mengüç Y, Kolesky DB, Wood RJ, Lewis JA (2014) 3D printing: embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater 26(36):6202–6202

    Google Scholar 

  22. O’Reilly MJ (2011) Aerosol jet printer as an alternative to wire bond and TSV technology for 3D interconnect applications. In: IMAPS international conference and exhibition on device packaging—in conjunction with the global business council, GBC 2011 spring conference, pp 135–138. www.scopus.com

  23. Richter C, Lipson H (2011) Untethered hovering flapping flight of a 3D-printed mechanical insect. Artif Life 17(2):73–86

    CrossRef  Google Scholar 

  24. Rogers JA, Bao Z, Raju VR (1998) Nonphotolithographic fabrication of organic transistors with micron feature sizes. Appl Phys Lett 72(21):2716–2718. www.scopus.com, cited By :150

  25. Rossiter J, Walters P, Stoimenov B (2009) Printing 3D dielectric elastomer actuators for soft robotics. In: Electroactive polymer actuators and devices (EAPAD) 2009, international society for optics and photonics, vol 7287, p 72870H

    Google Scholar 

  26. Shemelya C, Cedillos F, Aguilera E, Espalin D, Muse D, Wicker R, MacDonald E (2015) Encapsulated copper wire and copper mesh capacitive sensing for 3D printing applications. IIEEE Sens J 15. https://doi.org/10.1109/JSEN.2014.2356973

  27. Shemelya CM, Rivera A, Perez AT, Rocha C, Liang M, Yu X, Kief C, Alexander D, Stegeman J, Xin H, Wicker RB, MacDonald E, Roberson DA (2014) Mechanical, electromagnetic, and x-ray shielding characterization of a 3D printable tungsten–polycarbonate polymer matrix composite for space-based applications. J Electron Mater 44. https://doi.org/10.1007/s11664-015-3687-7

  28. Sirringhaus H, Shimoda T (2003) Inkjet printing of functional materials. MRS Bull 28(11):802–806

    CrossRef  Google Scholar 

  29. Sun K, Wei TS, Ahn BY, Seo JY, Dillon SJ, Lewis JA (2013) 3D printing of interdigitated li-ion microbattery architectures. Adv Mater 25(33):4539–4543

    CrossRef  Google Scholar 

  30. Swensen JP, Odhner LU, Araki B, Dollar AM (2015) Injected 3D electrical traces in additive manufactured parts with low melting temperature metals. In: 2015 IEEE international conference on robotics and automation (ICRA). IEEE, pp 988–995

    Google Scholar 

  31. Vatani M, Engeberg ED, Choi JW (2015) Conformal direct-print of piezoresistive polymer/nanocomposites for compliant multi-layer tactile sensors. Addit Manuf 7:73–82

    Google Scholar 

  32. Wendler M, Hubner G, Krebs M (2011) Development of printed thin and flexible batteries. Int Circ Graphic Ed Res 4:32–41

    Google Scholar 

  33. Wholers (2014) Wohlers Report 2014. Wohlers Associates Inc

    Google Scholar 

  34. Willis K, Brockmeyer E, Hudson S, Poupyrev I (2012) Printed optics: 3D printing of embedded optical elements for interactive devices. In: Proceedings of the 25th annual ACM symposium on User interface software and technology. ACM, pp 589–598

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric MacDonald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

MacDonald, E. (2022). Printing 3D Electronics for Robotics. In: Auat, F., Prieto, P., Fantoni, G. (eds) Rapid Roboting. Intelligent Systems, Control and Automation: Science and Engineering, vol 82. Springer, Cham. https://doi.org/10.1007/978-3-319-40003-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40003-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40001-3

  • Online ISBN: 978-3-319-40003-7

  • eBook Packages: EngineeringEngineering (R0)