Skip to main content

Additive Manufacturing Enabling Technologies for Rapid Roboting

  • 128 Accesses

Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA,volume 82)

Abstract

This chapter aims to give a general description of the additive manufacturing process and its future trends, focused mainly on the rapid development of robots and has three main parts. The first part briefly describes the seven categories of Additive Manufacturing Technologies. Second is the landscape of active and expired key patents, providing a general picture of the present and future of the different technologies in terms of accessibility for small companies or researcher groups working on robotics. Finally, the impact of Additive Manufacturing and the leading market trends are discussed to shape the near future of its technologies in Rapid Roboting.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-40003-7_2
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-40003-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   129.00
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. OpenSLS (2021). https://github.com/MillerLabFTW/OpenSLS. Accessed 20 2021

  2. RepRap (2021). https://reprap.org/wiki/RepRap. Accessed 20 2021

  3. What is Arduino? guide introduction (2021). https://www.arduino.cc/en/Guide/Introduction. Accessed 20 2021

  4. on Additive Manufacturing Technologies ACF, on Additive Manufacturing Technologies Subcommittee F42 91 on Terminology ACF (2012) Standard terminology for additive manufacturing technologies. Astm Int

    Google Scholar 

  5. Almquist T, Smalley D (1996) Thermal stereolithography. US Patent 5672312A

    Google Scholar 

  6. Associates W (2021) Wohlers report 2021

    Google Scholar 

  7. Bheda H (2018) Reinforced fused-deposition modeling. US Patent 10011073B2

    Google Scholar 

  8. Bredt J, Anderson T (1999) Method of three dimensional printing. US Patent 5902441A

    Google Scholar 

  9. Choi JW, MacDonald E, Wicker R (2010) Multi-material microstereolithography. Int J Adv Manuf Technol 49(5–8):543–551

    Google Scholar 

  10. Crump SS (1992) Apparatus and method for creating three-dimensional objects. US Patent 5121329A

    Google Scholar 

  11. Davidson T, Phillips R, Hernandes A, Russell D, Roche K, Zengerle W, Berlin A, Kinsley J, Sweet-Block B, Darul K (2006a) Three-dimensional printer. US Patent 20040012112A1

    Google Scholar 

  12. Davidson T, Phillips R, Hernandez A, Russell D, Roche K, Zengerle W, Berlin A, Kinsley J, Sweet-Block B, Darul K (2006b) Three-dimensional printer. US Patent 7037382B2

    Google Scholar 

  13. Deckard C (1997a) Apparatus for producing parts by selective sintering. US Patent 5597589A

    Google Scholar 

  14. Deckard C (1997b) Method for producing parts by selective sintering. US Patent 5639070A

    Google Scholar 

  15. DeSimone J, Ermoshkin A, Samulski E (2015) Method and apparatus for three-dimensional fabrication. US Patent 9211678B2

    Google Scholar 

  16. Feygin M (1988) Apparatus and method for forming an integral object from laminations. US Patent 4752352A

    Google Scholar 

  17. Feygin M, Shkolnik A, Diamond M, Dvorskiy E (1998) Laminated object manufacturing system. US Patent 5730817A

    Google Scholar 

  18. Gothait H (2001) Apparatus and method for three dimensional model printing. US Patent 6259962B1

    Google Scholar 

  19. Huang SJ, Wang CC, Lee SY, Wang CK, Wang CS, Chen CY, Chen CL, Lai WS, Hsieh C, Leu TS, et al (1996) Method for rapid prototyping by using linear light as sources. US Patent 7158849B2

    Google Scholar 

  20. Hull C (1986) Apparatus for production of three-dimensional objects by stereolithography. US Patent 4575330A

    Google Scholar 

  21. Hull CW, Jacobs PF, Schmidt KA, Smalley DR, Vinson WA (1993) Apparatus for building three-dimensional objects with sheets. US Patent 5192559A

    Google Scholar 

  22. Isaac H (1942) Method of forming structures wholly of fusion deposited weld metal. US Patent 2299747A

    Google Scholar 

  23. Iwata H, Norikane Y, Matsumura T, Niimi T, Naito H (2021) Method of manufacturing three-dimensional object, liquid set for manufacturing three-dimensional object, device for manufacturing three-dimensional object, and gel object. US Patent 10882245B2

    Google Scholar 

  24. Larsen TA, Romig E, Mitchell BJ (2019) System and method for additive fabrication using laminated sheets. US Patent 10293589B2

    Google Scholar 

  25. Ma K, Shuck QY, Bader JS (2018) Directed energy deposition with cooling mechanism. US Patent 20160369399A1

    Google Scholar 

  26. Manning GL (2000) End-of-vector laser power control in a selective laser sintering system. US Patent 6085122A

    Google Scholar 

  27. Matthews WT, Denney PE, Peters S (2018) Method and system for additive manufacturing using high energy source and hot-wire. US Patent 20150209905A1

    Google Scholar 

  28. McAlea KP, Forderhase PF, Ganninger ME, Kunig FW, Magistro AJ (1998) Selective laser sintering with composite plastic material. US Patent 5733497A

    Google Scholar 

  29. Meiners W, Wissenbach K, Gasser A (2001) Selective laser sintering at melting temperature. US Patent 6215093B1

    Google Scholar 

  30. Napadensky E (2015) Method of making a composite material by three-dimensional ink-jet printing. US Patent 8932511B2

    Google Scholar 

  31. Rolland J, DeSimone J (2018) Acceleration of stereolithography. US Patent 20160046072A1

    Google Scholar 

  32. Russell D, Anderson T, Bredt J, Vogel M, Seymour M, Bornhorst W, Hatsopoulos M (1999) Method and apparatus for prototyping a three-dimensional object. US Patent 6007318A

    Google Scholar 

  33. Russell D, Hernandez A, Kinsley J, Berlin A (2007) Apparatus and methods for 3D printing. US Patent 7291002B2

    Google Scholar 

  34. Swanson W, Hopkins P (1999) Thin-wall tube liquifier. US Patent 6004124A

    Google Scholar 

  35. Swanson W, Turley P, Leavitt P, Karwoski P, LaBossiere J, Skubic R (2004) High temperature modeling apparatus. US Patent 6722872B1

    Google Scholar 

  36. Swanson W, Turley P, Leavitt P, Karwoski P, LaBossiere J, Skubic R (2007a) High-temperature modeling method. US Patent 7297304B2

    Google Scholar 

  37. Swanson W, Turley P, Leavitt P, Karwoski P, LaBossiere J, Skubic R (2007b) High-temperature modeling method. US Patent 20040104515A1

    Google Scholar 

  38. Zagagi Z, Gothait H, Miller G (2010) Method for building a three dimensional object. US Patent 7685694B2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Prieto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Prieto, P. (2022). Additive Manufacturing Enabling Technologies for Rapid Roboting. In: Auat, F., Prieto, P., Fantoni, G. (eds) Rapid Roboting. Intelligent Systems, Control and Automation: Science and Engineering, vol 82. Springer, Cham. https://doi.org/10.1007/978-3-319-40003-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40003-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40001-3

  • Online ISBN: 978-3-319-40003-7

  • eBook Packages: EngineeringEngineering (R0)