Skip to main content

Active Deformation, Uplift and Subsidence in Southern South America Throughout the Quaternary: A General Review About Their Development and Mechanisms

  • Chapter
  • First Online:

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

A broad range of processes act today and have acted simultaneously during the Quaternary, producing relief from the Chilean coast, where the Pacific Ocean floor is sinking underneath the South American margin, to the Brazilian and Argentine Atlantic Ocean platform area. This picture shows to be complex and responds to a variety of processes which are just started to be considered. These processes involve mountains created in a passive margin setting along vast sections of the Brazilian Atlantic Ocean coast and regions located inland, to “current” orogenic processes along the Andean zone. On one hand, mountains in the passive margin seem to be created in the area where the forearc region eastwardly shifts at a similar rate than the westward advancing continent and, therefore, it can be considered as relatively stationary and dynamically sustained by a perpendicular-to-the-margin asthenospheric flow. On the other hand, the orogenic processes associated with the eastern Andes show to be highly active at two particular areas: the Subandean region, where the trench is stationary and the Pampean flat subduction zone to the south, where a shallower geometry of the Nazca plate creates particular conditions for deformation and rapid propagation of the orogenic front generating a high-amplitude orogen. In the Southern Central and Patagonian Andes, mountain (orogenic) building processes are attenuated, and other mechanisms of regional uplift become dominant, such as the (i) crustal weakening and deformation linked to the impact of mantle plumes originated in the 660 km mantle transition, (ii) the retirement of ice masses from the Andes after the Pleistocene producing an isostatic rebound, (iii) the dynamic topography associated with the opening of asthenospheric windows during the subduction of the Chile ridge and slab tearing processes, (iv) the subduction of oceanic plateaux linked to transform zones and (v) the accretion of oceanic materials beneath the forearc region. Additionally and after recent geodetic studies, (vi) forearc coastal uplift due to co-seismic and post-seismic lithospheric stretching associated with large earthquakes along the subduction zone, also shows to be a factor associated with regional uplift that needs to be further considered as an additional mechanism from the Chilean coast to presumably the arc zone.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aaron F, Allmendinger RW, Cembrano J, González G, Yáñez G (2013) Permanent fore-arc extension and seismic segmentation: insights from the 2010 Maule earthquake, Chile. J Geophys Res Solid Earth 118:724–739

    Article  Google Scholar 

  • Armijo R, Rauld R, Thiele R, Vargas G, Campos J, Lacassin R, Kausel E (2007) The West Andean Thrust, the San Ramón Fault, and the seismic hazard for Santiago, Chile. Tectonics 29 (TC2007). doi:10.1029/2008TC002427

    Google Scholar 

  • Arriagada C, Arancibia G, Cembrano J, Martínez F, Carrizo D, Van Sint Jan M, Sáez E, González G, Rebolledo S, Sepúlveda S, Contreras-Reyes E, Jensen E, Yañez G (2011) Nature and tectonic significance of co-seismic structures associated with the Mw 8.8 Maule earthquake, central-southern Chile forearc. J Structural Geol 33:891–897

    Article  Google Scholar 

  • Asch G, Schurr B, Bohm M, Yuan X, Haberland C, Heit B, Kind R, Woelbern I, Bataille K, Comte D, Pardo M, Viramonte J, Rietbrok A, Giese P (2006) Seismological studies of the Central and Southern Andes. In: Oncken et al (eds) The Andes. Frontiers in earth Science, Springer, Berlin, p 567

    Google Scholar 

  • Baker S, Gosse J, McDonald E, Evenson E, Martínez O (2009) Quaternary history of the piedmont reach of Río Diamante, Argentina. J South Amer Earth Sci 28:54–73

    Article  Google Scholar 

  • Bastías H, Tello G, Perucca L, Paredes J (1993) Peligro sísmico y neotectónica. 12° Congreso Geológico Argentino y 2° Congreso de Exploración de Hidrocarburos. In: Ramos VA (ed) Geología y Recursos Naturales de Mendoza. Relatorio 6(1):645–658

    Google Scholar 

  • Bezerra F, Ferreira J, Sousa M (2006) Review of seismicity and Neogene tectonics in northeastern Brazil. Rev Asoc Geológ Argentina 61(4):525–535

    Google Scholar 

  • Breitsprecher K, Thorkelson D (2009) Neogene kinematic history of Nazca–Antarctic–Phoenix slab windows beneath Patagonia and the Antarctic Peninsula. Tectonophysics 464:10–20

    Article  Google Scholar 

  • Brooks B, Bevis M, Smalley R, Kendrick E, Manceda R, Lauría E, Maturana R, Araujo M (2003) Crustal motion in the Southern Andes (26°–36°S): do the Andes behave like a microplate? Geochem Geophys Geosyst 4. doi:10.1029/2003GC000505

  • Brooks B, Smalley R, Bevis M, Foster J, Blanco M, Pollitz F, Folguera A, Ramos V, Barrera H, Cimbaro S, Simons M, Sladen A, Distante C (2010) Megathrust seismic events, post seismic deformation and mountain building: Andean deformation and the Maule earthquake. In: Chapman Conference, Abstracts, Concepción

    Google Scholar 

  • Brooks B, Bevis M, Whipple K, Arrowsmith R, Foster J, Zapata T, Kendrik E, Minaya E, Echalar A, Blanco M, Euillades P, Sandoval M, Smalley R (2011) Orogenic-wedge deformation and potential for great earthquakes in the central Andean backarc. Nat Geosci. doi:10.1038/NGEO1143

    Google Scholar 

  • Burd AI, Booker JR, Mackie R, Favetto A, Pomposiello MC (2014) Three-dimensional electrical conductivity in the mantle beneath the Payún Matru volcanic field in the Andean back-arc of Argentina near 36.5°S: evidence for decapitation of a mantle plume by resurgent upper mantle shear during slab steepening. Geophys J Int 1:1–12

    Google Scholar 

  • Cahill T, Isacks B (1992) Seismicity and shape of the subducted Nazca plate. J Geophys Res 97(B12):17503–17529

    Article  Google Scholar 

  • Calixto F, Sandvol E, Kay S, Mulcahy P, Heit B, Yuan X, Coira B, Comte D, Alvarado P (2013) Velocity structure beneath the southern Puna plateau: Evidence for delamination. Geochem Geophys Geosyst 14

    Google Scholar 

  • Cande S, Leslie R (1986) Late Cenozoic tectonics of the Southern Chile trench. J Geophys Res 91:47–496

    Article  Google Scholar 

  • Cobbold P, Ruffet G, Leith H, Loeseth H, Rodrigues N, Leanza H, Zanella A (2014) Radial patterns of bitumen dykes around Quaternary volcanoes, provinces of Neuquén and southernmost Mendoza, Argentina. J South Am Earth Sci 56:454–467 (In Press)

    Google Scholar 

  • Codignotto J (1996) Cuaternario y dinámica costera. In: Ramos VA, Turic M (eds) Geología y Recursos Naturales de la Plataforma Continental Argentina. 13° Congreso Geológico Argentino y 3° Congreso de Exploración de Hidrocarburos. Relatorio 2:17–28

    Google Scholar 

  • Cogné N, Gallagher K, Cobbold P, Riccomini C, Gautheron C (2012) Post-breakup tectonics in southeast Brazil from thermochronological data and combined inverse-forward thermal history modeling. J Geophys Res 117 (B11413). doi:10.1029/2012JB009340

    Google Scholar 

  • Cortés J (1999) Fallas cuaternarias oblicuas al frente montañoso en la cordillera Frontal de Mendoza (34–34°30′S). Revista Cuaternario y Ciencias Ambientales. Publicación Especial n°4

    Google Scholar 

  • Costa C, Vita-Finzi C (1996) Late Holocene faulting in the southeast Sierras Pampeanas of Argentina. Geology 24(12):1127–1130

    Article  Google Scholar 

  • Costa CH, Audemard MFA, Bezerra FHR, Lavenu A, Machette MN, París G (2006a) An overview of the main quaternary deformation of South America. Rev Asoc Geológica Argentina 61:461–479

    Google Scholar 

  • Costa C, Smalley R, Schwartz D, Stenner H, Ellis M, Ahumada E, Velasco M (2006b) Paleoseismic observations of an onshore transform boundary: the Magallanes-Fagnano fault, Tierra del Fuego, Argentina. Rev Asoc Geológica Argentina 61(4):647–657

    Google Scholar 

  • Dávila F, Gimenez M, Nóbile J, Martínez P (2012) The evolution of the high-elevated depocenters of the northern Sierras Pampeanas (ca. 28° SL), Argentine broken foreland, South-Central Andes: the Pipanaco Basin. Basin Res 24:1–22

    Article  Google Scholar 

  • Darwin CR (1846) Geological observations on South America. Being the third part of the geology of the voyage of the Beagle, under the command of Capt. Fitzroy, R.N. during the years 1832 to 1836. Smith Elder and Co., London, p 279

    Google Scholar 

  • Díaz D, Maksymowicz A, Vargas G, Vera E, Contreras-Reyes E, Rebolledo S (2014) Exploring the shallow structure of the San Ramón thrust fault in Santiago, Chile (33.5°S), using active seismic and electric methods. Solid Earth Discuss 6:339–375

    Article  Google Scholar 

  • Dietrich R, Ivins E, Casassa G, Lange H, Wendt H, Fritsche M (2010) Rapid crustal uplift in Patagonia due to enhanced ice loss. Earth Planet Sci Lett. doi:10.1016/j.epsl.2009.10.021

    Google Scholar 

  • Dzierma Y, Thorwart M, Rabbel W (2012) Moho topography and subducting oceanic slab of the Chilean continental margin in the maximum slip segment of the 1960 Mw 9.5 Valdivia (Chile) earthquake from P-receiver functions. Tectonophysics 530–531:180–192

    Article  Google Scholar 

  • Echavarría L, Hernández R, Allmendinger R, Reynolds J (2003) Subandean thrust and fold belt of northwestern Argentina: geometry and timing of the Andean evolution. AAPG Bull 87(6):965–985

    Article  Google Scholar 

  • Farías M, Charrier R, Comte D, Martinod J, Herail G (2005) Late Cenozoic deformation and uplift of the western flank of the Altiplano: evidence from the depositional, tectonic, and geomorphologic evolution and shallow seismic activity (northern Chile at 19°30′S). Tectonic 24 (TC4001). doi:10.1029/2004TC001667

    Google Scholar 

  • Farías M, Comte D, Roecker S, Carrizo D, Pardo M (2011) Crustal extensional faulting triggered by the 2010 Chilean earthquake: the Pichilemu seismic sequence. Tectonics 30

    Google Scholar 

  • Feruglio E (1950) Levantamiento de la costa Atlántica durante el Cuaternario. In: Descripción geológica de la Patagonia, tomo 3:180–181. Buenos Aires

    Google Scholar 

  • Folguera A, Ramos V (2009) Collision of the Mocha fracture zone and a less than 4 Ma old wave of orogenic uplift in the Andes (36°–38°S). Lithosphere, Geological Soc Am 1(6):364–369

    Google Scholar 

  • Folguera A, Ramos V, Hermanns R, Naranjo J (2004) Neotectonics in the foothills of the Southernmost Central Andes (37°–38°S). Evidence of the strike-slip displacement along the Antiñir-Copahue fault zone. Tectonics 23 (TC 5008), p 23

    Google Scholar 

  • Folguera A, Zapata T, Ramos VA (2006a) Late Cenozoic extension and the evolution of the Neuquén Andes. In: Kay SM, Ramos VA (eds) Late Cretaceous to recent magmatism and tectonism of the Southern Andean margin at the latitude of the Neuquén basin (36–39°S). GSA Special paper, 407:267–285

    Google Scholar 

  • Folguera A, Ramos V, González Díaz E, Hermanns R (2006b) Miocene to quaternary deformation of the Guañacos fold and thrust belt in the Neuquén Andes between 37° and 37°30′S. In: Kay SM, Ramos VA (eds) Late Cretaceous to recent magmatism and tectonism of the Southern Andean margin at the latitude of the Neuquen basin (36–39°S). GSA Special paper, 407:247–266

    Google Scholar 

  • Folguera A, Introcaso A, Giménez M, Ruiz F, Martínez P, Tunstall C, García Morabito E, Ramos VA (2007) Crustal attenuation in the Southern Andean retroarc determined from gravimetric studies (38°–39°30′S): The Lonco-Luán astenospheric anomaly. Tectonophysics 439(2007):129–147. doi:10.1016/j.tecto.2007.04.001

    Article  Google Scholar 

  • Folguera A, Bottesi G, Ramos V, Zapata T (2008) Crustal collapse at the retroarc zone (2–0 Ma): Tromen volcanic plateau, Southern Central Andes (36°40′–37°30′S). Tectonophysics ISAG 2005 Special Issue 459:140–160. doi:10.1016/j.tecto.2007.12.013

    Google Scholar 

  • Folguera A, Rojas Vera E, Bottesi G, Zamora Valcarce G, Ramos VA (2010) The Loncopué trough: a Cenozoic basin produced by extension in the southern Central Andes. J Geodynamics 49:287–295

    Article  Google Scholar 

  • Galland O, Hallot E, Cobbold PR, Ruffet G, De Bremond d’Ars J (2007) Volcanism in a compressional Andean setting: a structural and geochronological study of Tromen volcano (Neuquén province, Argentina). Tectonics 26

    Google Scholar 

  • Geersen J, Behrmann J, Volker D, Krastel S, Ranero C, Diaz-Naveas J, Weinrebe W (2011) Active tectonics of the South Chilean marine fore arc (35°S–40°S). Tectonics 30 (TC3006). doi:10.1029/2010TC002777

    Google Scholar 

  • Gephart JW (1994) Topography and subduction geometry in the central Andes: clues to the mechanics of a non-collisional orogen. J Geophys Res 99:12279–12288. doi:10.1029/94JB00129

    Article  Google Scholar 

  • Guillaume B, Martinod J, Husson L, Roddaz M, Riquelme R (2009) Neogene uplift of central eastern Patagonia: dynamic response to active spreading ridge subduction? Tectonics 28. doi:10.1029/2008TC002324

    Google Scholar 

  • Guillaume B, Gautheron C, Simon-Labric T, Martinod J, Roddaz M, Douville E (2013) Dynamic topography control on Patagonian relief evolution as inferred from low temperature thermochronology. Earth Planet Sci Lett 364:157–167

    Article  Google Scholar 

  • Guzmán C, Cristallini E, Bottesi G (2007) Contemporary stress orientations in the Andean retroarc between 34°S and 39°S from borehole breakout analysis. Tectonics 26. doi:10.1029/2006TC001958

    Google Scholar 

  • Isacks BL (1988) Uplift of the Central Andean Plateau and bending of the Bolivian Orocline. J Geophys Res 93(B4):3211–3231. doi:10.1029/JB093iB04p03211

    Article  Google Scholar 

  • Ivins ER, James TS (2002) Simple model for late Holocene and present-day Patagonian glacier fluctuations and predictions of a geodetically detectable isostatic response. J Geophys Int 138:601–624

    Article  Google Scholar 

  • Ivins ER, James TS (2004) Bedrock response to Llanquihue Holocene and present-day glaciations in southernmost South America. Geophys Res Lett 31 (L24613). doi:10.1029/2004GL021500

  • Kendrick EC, Bevis M, Smalley RF, Cifuentes O, Galban F (1999) Current rates of convergence across the central Andes: estimates from continuous GPS observations. Geophys Res Lett 26:541–544

    Article  Google Scholar 

  • Lagabrielle Y, Suárez M, Malavieille J, Morata D, Espinoza F, Maury RC, Scalabrino B, Barbero L, Cruz RD La, Rossello E, Bellon H (2007) Pliocene extensional tectonics in the Eastern Central Patagonian Cordillera: geochronological constraints and new field evidence. Terra Nov 19:413–424. doi:10.1111/j.1365-3121.2007.00766.x

    Google Scholar 

  • Lavenu A, Cembrano J (1999) Compressional- and transpressional-stress pattern for Pliocene and quaternary brittle deformation in fore-arc and intra-arc zones (Andes of Central and Southern Chile). J Struct Geol 21:1669–1691. doi:10.1016/S0191-8141(99)00111-X

    Article  Google Scholar 

  • Lieser K, Grevemeyer I, Lange D, Flueh E, Tilmann F, Contreras-Reyes E (2014) Splay fault activity revealed by aftershocks of the 2010 Mw 8.8 Maule earthquake, central Chile. Geology. doi:10.1130/G35848.1

    Google Scholar 

  • McQuarrie N, Horton BK, Zandt G, Beck S, DeCelles PG (2005) Lithospheric evolution of the Andean fold–thrust belt, Bolivia, and the origin of the central Andean plateau. Tectonophysics 399(1–4):15–37. doi:10.1016/j.tecto.2004.12.013

    Article  Google Scholar 

  • Melnick D, Bookhagen B, Echtler H, Strecker M (2006) Coastal deformation and great subduction earthquakes, Isla Santa María, Chile (37°S). Geol Soc Amer Bull 118(11/12):1463–1480

    Article  Google Scholar 

  • Messager G, Nivière B, Martinod J, Lacan P, Xavier J-P (2010) Geomorphic evidence for Plio-quaternary compression in the Andean foothills of the southern Neuquén basin, Argentina. Tectonics 29(TC4003):1–18

    Google Scholar 

  • Murdie R, Prior D, Styles P, Flint S, Pearce R, Agar S (1993) Seismic responses to ridge-transform subduction: Chile triple junction. Geology 21:1095–1098

    Article  Google Scholar 

  • Nievière B, Messager G, Carretier S, Lacan P (2013) Geomorphic expression of the Southern Central Andes forebulge (37°S, Argentina). Terra Nova 25:361–367

    Article  Google Scholar 

  • Oncken O, Hindle D, Kley J, Elger K, Victor P, Schemmann K (2006) Deformation of the Central Andean upper plate system—facts, fiction, and constraints for plateau models. In: Brun J-P, Oncken O, Weissert HD (eds) The Andes. Springer, Berlin, pp 1–25

    Chapter  Google Scholar 

  • Pedoja K, Regard V, Husson L, Martinod J, Guillaume B, Fucks E, Iglesias M, Weill P (2011) Uplift of quaternary shorelines in Eastern Patagonia: Darwin revisited. Geomorphol 127:121–142

    Article  Google Scholar 

  • Pesicek JD, Engdahl ER, Thurber CH, DeShon HR, Lange D (2012) Mantle subducting slab structure in the region of the 2010 M8.8 Maule earthquake (30–40°S), Chile. Geophys J Int 191:317–324

    Article  Google Scholar 

  • Ramos VA, Kay SM (1992) Southern Patagonian plateau basalts and deformation: back-arc testimony of ridge collision. Tectonophysics 205:261–282

    Article  Google Scholar 

  • Ramos VA, Tomas Z, Cristallini E, Introcaso A (2004) The Andean thrust system—latitudinal variations in structural styles and orogenic shortening. In: McClay KR (ed), Thrust Tectonics and hydrocarbon systems. AAPG Memoir, 82:30–50

    Google Scholar 

  • Ramos VA, Alonso R, Strecker M (2006) Estructura y neotectónica de las Lomas de Olmedo, zona de transición entre los sistemas Subandino y de Santa Bárbara Provincia de Salta. Rev Asoc Geológ Argentina 61(4):579–588

    Google Scholar 

  • Rehak K, Strecker M, Echtler M (2008) Morphotectonic segmentation of an active forearc, 37–41°S, Chile. Geomorphol 94:98–116

    Article  Google Scholar 

  • Riccomini C, Assumpçao M (1999) Quaternary tectonics in Brazil. Episodes 22(3):221–225

    Google Scholar 

  • Rodríguez M, Carretier S, Charrier R, Sailard M, Regard V, Herail G, Hall S, Farber D, Audin L (2013) Geochronology of pediments and marine terraces in north-central Chile and their implications for quaternary uplift in the Western Andes. Geomorphol 180–181(2013):33–46

    Article  Google Scholar 

  • Rojas Vera E, Folguera A, Gímenez M, Martínez P, Ruiz F, Ramos VA (2009) Evolución tectónica de la fosa de Loncopué: Estructura del depocentro cuaternario del Huecú y su relación con la sedimentación y el volcanismo. Rev Asoc Geológ Argentina 64(2):214–230

    Google Scholar 

  • Rojas Vera EA, Folguera A, Zamora Valcarce G, Giménez M, Ruiz F, Martínez P, Bottesi G, Ramos VA (2010) Neogene to quaternary extensional reactivation of a fold and thrust belt: the Agrio belt in the Southern Central Andes and its relation to the Loncopué trough (38°–39°S). Tectonophysics 492:279–294

    Article  Google Scholar 

  • Rojas Vera EA, Selles D, Folguera A, Gímenez M, Ruíz F, Orts D, Zamora Valcarce G, Martínez P, Bechis F, Ramos VA (2014) The origin of the Loncopué trough in the retroarc of the Southern Central Andes from field, geophysical and geochemical data. Tectonophysics 637:1–19

    Google Scholar 

  • Rosenau M, Melnick D, Echtler H (2006) Kinematic constraints on intra-arc shear and strain partitioning in the Southern Andes between 38° and 42°S latitude. Tectonics 25 (TC4013). doi:10.1029/2005TC001943

    Google Scholar 

  • Rossetti D, Souza L, Prado R, Elis V (2012) Neotectonics in the northern equatorial Brazilian margin. J South Am Earth Sci 37:175–190

    Article  Google Scholar 

  • Ruegg JC, Rudloff A, Vigny C, Madariaga R, de Chabalier JB, Campos J, Kausel E, Barrientos S, Dimitrov D (2009) Interseismic strain accumulation measured by GPS in the seismic gap between Constitución and Concepción in Chile. Phys Earth Planet Inter 175:78–85

    Article  Google Scholar 

  • Russo R (2010) Subduction of the Chile Ridge: upper mantle structure and flow. GSA Today 20(9). doi:10.1130/GSATG61A.1

  • Russo RM, Silver PG (1994) Trench-parallel flow beneath the Nazca plate from seismic anisotropy. Science 263:1105–1111

    Article  Google Scholar 

  • Sagripanti L, Rojas Vera E, Folguera A, Gianni G, Ramos VA (2014) Out-of-sequence neotectonic reactivation of the orogenic front in the Southern Central Andes. Geomorphol (In Press)

    Google Scholar 

  • Scalabrino B, Lagabrielle Y, Malavieille J, Dominguez S, Melnick D, Espinoza F, Suarez M, Rossello E (2010) A morphotectonic analysis of central Patagonian Cordillera: negative inversion of the Andean belt over a buried spreading center? Tectonics 29 (TC2010). doi:10.1029/2009TC002453

    Google Scholar 

  • Schellart WP, Freeman J, Stegman DR, Moresi L, May D (2007) Evolution and diversity of subduction zones controlled by slab width. Nature 446:308–311

    Article  Google Scholar 

  • Schellart W, Stegman D, Farrington R, Moresi L (2011) Influence of lateral slab edge distance on plate velocity, trench velocity and subduction partitioning. J Geophys Res 116 (B10408). doi. 10.1029/2011JB008535

  • Siame L, Bourles D, Sebrier M, Bellier O, Castano J, Araujo M, Pérez M, Raisbeck G, Yiou F (1997) Cosmogenic dating ranging from 20 to 700 ka of a series of alluvial fan surfaces affected by the El Tigre fault, Argentina. Geology 25(11):975–978

    Article  Google Scholar 

  • Sobolev SV, Babeyko AY (2005) What drives orogeny in the Andes? Geology 33(8):617–620

    Article  Google Scholar 

  • Stefer S, Moernaut J, Melnick D, Echtler H, Arz H, Lamy F, Batist M, Oncken O, Haug G (2009) Forearc uplift rates deduced from sediment cores of two coastal lakes in south-central Chile. Tectonophysics. doi:10.1016/j.tecto.2009.05.006

    Google Scholar 

  • Søager N, Holm PM, Llambías EJ (2013) Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment. Chem Geol 349–350:36–53

    Article  Google Scholar 

  • Tong X, Sandwell D, Luttrell K, Brooks B, Bevis M, Shimada M, Foster J, Smalley R, Parra H, Báez Soto JC, Blanco M, Kendrick E, Genrich J, Caccamise DJ (2010) The 2010 Maule, Chile earthquake: downdip rupture limit revealed by space geodesy. Geophys Res Lett 37

    Google Scholar 

  • Turienzo M, Dimieri L, Frisicale C, Araujo V, Sánchez N (2012) Cenozoic structural evolution of the Argentinean Andes at 34°40′S: a close relationship between thick and thin-skinned deformation. Andean Geol 39(2):317–357

    Google Scholar 

  • Varekamp J, Hesse A, Mandeville C (2010) Back-arc basalts from the Loncopue graben (Province of Neuquen, Argentina). J Volcanol Geotherm Res 197:313–328

    Article  Google Scholar 

  • Vargas G, Rebolledo S, Sepúlveda S, Lahsen A, Thiele R, Townley B, Padilla C, Rauld R, Herrera M, Lara M (2013) Submarine earthquake rupture, active faulting and volcanism along the major Liquiñe-Ofqui fault zone and implications for seismic hazard assessment in the Patagonian Andes. Andean Geol 40(1):141–171

    Google Scholar 

  • Vergés J, Ramos VA, Meigs A, Cristallini E, Bettini F, Cortés J (2006) Crustal wedging triggering recent deformation in the Andean thrust front between 31°S and 33°S: Sierras Pampeanas-Precordillera interaction. J Geophys Res 112 (B03S15). doi:10.1029/2006JB004287

  • Vogt H, Vogt T, Calmes A (2010) Influence of the post-Miocene tectonic activity on the geomorphology between Andes and Pampa Deprimida in the area of Provincia de la Pampa, Argentina. Geomorphology 121:152–166

    Article  Google Scholar 

  • Wang K, Hu Y, Bevis M, Kendrick E, Smalley B, Barriga Vargas R, Lauría E (2007) Crustal motion in the zone of the 1960 Chile earthquake: Detangling earthquake-cycle deformation and forearc-sliver translation. Geochem Geophys Geosyst 8(10):Q10010. doi:10.1029/2007GC001721

    Article  Google Scholar 

  • Wang L, Shum C, Simons F, Tassara A, Erkan K, Jekeli C, Braun A, Kuo C, Lee H, Yuan D (2012) Coseismic slip of the 2010 Mw 8.8 Great Maule, Chile, earthquake quantified by the inversion of GRACE observations. Earth Planet Sci Lett 335–336:167–179

    Article  Google Scholar 

  • Yuan X, Asch G, Bataile K, Bohm M, Echtler H, Kind R, Onchen O, Wölbern I (2006) Deep seismic images of the Southern Andes. In: Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén basin (35–39°S) (SM Kay, VA Ramos, eds). Spec Pap Geol Soc America 407:61–72

    Google Scholar 

Download references

Acknowledgmentss

The authors acknowledge Carlos Costa for a revision made on an early version of the manuscript. Additionally we acknowledge Editors Dres Gasparini, Rabassa, Deschamps and Tonni, for the invitation to integrate this volume. This work was financed by PIP 11220110100506, UBACYT 20020110100019, PICT-2012-1490. This is the R-184 contribution of the Instituto de Estudios Andinos “Don Pablo Groeber”, University of Buenos Aires, Conicet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Folguera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Folguera, A. et al. (2016). Active Deformation, Uplift and Subsidence in Southern South America Throughout the Quaternary: A General Review About Their Development and Mechanisms. In: Gasparini, G., Rabassa, J., Deschamps, C., Tonni, E. (eds) Marine Isotope Stage 3 in Southern South America, 60 KA B.P.-30 KA B.P.. Springer Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-40000-6_6

Download citation

Publish with us

Policies and ethics