Abrupt Climate Changes During the Marine Isotope Stage 3 (MIS 3)

  • Eduardo Andrés AgostaEmail author
  • Rosa Hilda Compagnucci
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)


The climate in the North Atlantic Ocean during the Marine Isotope Stage 3 (MIS 3)—roughly between 80,000 years before present (B.P.) and 20,000 years B.P., within the last glacial period—is characterized by great instability, with opposing climate transitions including at least six colder Heinrich (H) events and fourteen warmer Dansgaard–Oeschger (D-O) events. Periodic longer cooling cycles encompassing two D-O events and ending in a colder Heinrich episode occurred lasting about 10 to 15 ky each, known as the Bond cycle. Heinrich events occurred less frequently than D-O events. These were recurrent every 1.5 ky on average, while ~10 ky elapsed between two H events. Neither of the two types of events is strictly periodical, however. After H events abrupt shifted to warmer climate, the D-O events followed immediately. During an H event, abnormally large amounts of rock debris transported by icebergs were deposited as layers at the bottom of the North Atlantic Ocean. The various theories on the causes include factors internal to the dynamics of ice sheets, and external factors such as changes in the solar flux and changes in the Atlantic Meridional Overturning Circulation (AMOC). The latter is the most robust hypothesis. At certain times, these ice sheets released large amounts of freshwater into the North Atlantic Ocean. Heinrich events are an extreme example of this, when the Laurentide ice sheet disgorged excessively large amounts of freshwater into the Labrador Sea in the form of icebergs. These freshwater dumps reduced ocean salinity enough to slow down deep-water formation and AMOC. Since AMOC plays an important role in transporting heat northward, a slowdown would cause the North Atlantic Ocean to cool. Later, as the addition of freshwater decreased, ocean salinity and deep-water formation increased and climate conditions recovered. During the D-O events, the high-latitude warming occurred abruptly (probably in decades to centuries), reaching temperatures close to interglacial conditions. Even though H and D-O events seemed to have been initiated in the North Atlantic Ocean, they had a global footprint. Global climate anomalies were consistent with a slowdown of AMOC and reduced ocean heat transport into the northern high latitudes. The bipolar pattern with warming conditions in the Northern Hemisphere (NH) and cooling in the Southern Hemisphere (SH) is discussed from the information published by various authors who have used the limited data available for the SH, and palaeoclimatic simulations obtained by numerical modelling. Results show that the SH mid-latitude anomalies presented much smaller magnitude than those of the NH.


MIS 3 Abrupt climatic change Dansgaard–Oeschger events Heinrich events Ice drift in the North Atlantic Ocean GISP2 oxygen isotope (δ18O) Oceanic circulation Atmospheric circulation 



We thank the National Agency of Science and Technique Promotion of Argentina (ANPCyT) for supporting the project PICT-2013-0043. Many thanks to the Carmelite Order.


  1. Alkama R, Kageyama M, Ramstein G, Marti O, Ribstein P, Swingedouw D (2007) Impact of a realistic river routing in coupled ocean atmosphere simulations of the Last Glacial Maximum climate. Clim Dyn 30:855–869CrossRefGoogle Scholar
  2. Alley RB, Meese DA, Shuman CA, Gow AJ, Taylor KC, Grootes PM, Zielinski GA (1993) Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nat London 362:527–527Google Scholar
  3. Andres M, Gawarkiewicz GG, Toole JM (2013) Interannual sea level variability in the western North Atlantic: regional forcing and remote response. Geophys Res Lett 40:5915–5919. doi: 10.1002/2013GL058013 CrossRefGoogle Scholar
  4. Arbic BK, MacAyeal DR, Mitrovica JX, Milne GA (2004) Paleoclimate: Ocean tides and Heinrich events. Nature 432:460. doi: 10.1038/432460a
  5. Baker PA, Rigsby CA, Seltzer GO, Fritz SC, Lowenstein TK, Bacher NP, Veliz C (2001) Tropical climate changes at millennial and orbital time scales on the Bolivian Altiplano. Nature 409:698–701CrossRefGoogle Scholar
  6. Barker S, Diz P, Vautravers MJ, Pike J, Knorr G, Hall IR, Broecker WS (2009) Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 457(7233):1097–1102CrossRefGoogle Scholar
  7. Berger A (1978) Long term variations of daily insolation and quaternary climatic changes. J Atmos Sci 35(2):2362–2367CrossRefGoogle Scholar
  8. Birchfield GE, Broecker WS (1990) A salt oscillator in the glacial Atlantic? 2. A “scale analysis” model. Paleoceanography 5(6):835–843CrossRefGoogle Scholar
  9. Bitz CM, Chiang JCH, Cheng W, Barsugli JJ (2007) Rates of thermohaline recovery from freshwater pulses in modern, Last Glacial Maximum, and greenhouse warming climates. Geophys Res Lett 34(7). doi: 10.1029/2006GL029237
  10. Bond G, Lotti R (1995) Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science 267:1005–1010CrossRefGoogle Scholar
  11. Bond G, Heinrich H, Broecker W, Labeyrie L, McManus J, Andrews J, Huon S, Jantschik R, Clasen S, Simet C, Tedesco K, Klas M, Bonani G, Ivy S (1992) Evidence for massive discharges of icebergs into the North Atlantic Ocean during the last glacial period. Nature 360:245–249CrossRefGoogle Scholar
  12. Bond G, Broecker W, Johnsen S, McManus J, Labeyrie L, Jouzel J, Bonani G (1993) Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365:143–147CrossRefGoogle Scholar
  13. Bond GC, Showers W, Cheseby M, Lotti R, Almasi P, deMenocal P, Priore P, Cullen H, Hajdas I, Bonani G (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278(5341):1257–1266CrossRefGoogle Scholar
  14. Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt J-Y, Abe- Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD, Kageyama M, Kitoh A, Laîné A, Loutre M-F, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007) Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum e part 1: experiments and large-scale features. Clim Past 3:261–277CrossRefGoogle Scholar
  15. Braun H, Kurths J (2010) Were Dansgaard-Oeschger events forced by the Sun? Eur Phys J-Spec Top 191(1):117–129CrossRefGoogle Scholar
  16. Braun H, Ganopolski A, Christl M, Chialvo DR (2007) A simple conceptual model of abrupt glacial climate events. Nonlin Processes Geophys 14:709–721CrossRefGoogle Scholar
  17. Broccoli AJ, Dahl KA, Stouffer RJ (2006) Response of the ITCZ to northern hemisphere cooling. Geophys Res Lett 33:L01702. doi: 10.1029/2005GL024546 CrossRefGoogle Scholar
  18. Broecker WS (1994) Massive iceberg discharges as triggers for global climate change. Nature 372:421–424Google Scholar
  19. Broecker WS (1998) Paleocean circulation during the last deglaciation: a bipolar seesaw? Paleoceanography 13:119–121CrossRefGoogle Scholar
  20. Brook EJ, Sowers T, Orchardo J (1996) Rapid variations in atmospheric methane concentration during the past 110,000 years. Science 273(5278):1087–1091CrossRefGoogle Scholar
  21. Buiron D, Chappellaz J, Stenni B, Frezzotti M, Baumgartner M, Capron E, Landais A, Lemieux-Dudon B, Masson-Delmotte V, Montagnat M, Parrenin F, Schilt A (2011) TALDICE-1 age scale of the Talos Dome deep ice core, East Antarctica. Clim Past 7:1–16. doi: 10.5194/cp-7-1-2011 CrossRefGoogle Scholar
  22. Buiron D, Stenni B, Chappellaz J, Landais A, Baumgartner M, Bonazza M, Capron E, Frezzotti M, Kageyama M, Lemieux-Dudon B, Masson-Delmotte V, Parrenin F, Schilt A, Selmo E, Severi M, Swingedouw D, Udisti R (2012) Regional imprints of millennial variability during the MIS 3 period around Antarctica. Quat Sci Rev 48:99–112CrossRefGoogle Scholar
  23. Calov R, Ganopolski A, Petoukhov V, Claussen M, Greve R (2002) Large-scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model. Geophys Res Lett 29(24)Google Scholar
  24. Chiang JCH, Cheng W, Bitz CM (2008) Fast teleconnections to the tropical Atlantic sector from Atlantic thermohaline adjustment. Geophys Res Lett 35:L07704. doi: 10.1029/2008GL033292 CrossRefGoogle Scholar
  25. Clark PU, Hostetler SW, Pisias NG, Schmittner A, Meissner KJ (2007) Mechanisms for an ∼7‐Kyr climate and sea‐level oscillation during marine isotope stage 3. Ocean circulation: mechanisms and impacts-past and future changes of meridional overturning, pp 209–246Google Scholar
  26. Clement AC, Peterson LC (2008) Mechanisms of abrupt climate change of the last glacial period. Rev Geophys 46. doi: 10.1029/2006RG000204
  27. Colling A (2001) Ocean circulation, vol 3. Open University, Oceanography Course Team Butterworth-Heinemann, Science, Butterworth-Heinemann, OxfordGoogle Scholar
  28. Conkright ME (2002) World ocean atlas. Objective analyses, data statistics, and figures. Silver Springs, MD: CD-ROM DocumentationGoogle Scholar
  29. Cuffey KM, Clow GD (1997) Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition. J Geophys Res Oceans (1978–2012) 102(C12):26383–26396Google Scholar
  30. Dahl KA, Broccoli AJ, Stouffer RJ (2005) Assessing the role of North Atlantic freshwater forcing in millennial scale climate variability: a tropical Atlantic perspective. Clim Dyn 24:325–346CrossRefGoogle Scholar
  31. Dällenbach A, Blunier T, Flückiger J, Stauffer B, Chappellaz J, Raynaud D (2000) Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the last glacial and the transition to the Holocene. Geophys Res Lett 27:1005–1008CrossRefGoogle Scholar
  32. Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Bond G (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364(6434):218–220CrossRefGoogle Scholar
  33. Ding Q, Steig EJ, Battisti DS, Küttel M (2011) Winter warming in West Antarctica caused by central tropical Pacific warming. Nat Geosci 4:398–403. doi: 10.1038/ngeo1129 CrossRefGoogle Scholar
  34. Ditlevsen PD, Andersen KK, Svensson A (2007) The DO-climate events are probably noise induced: statistical investigation of the claimed 1470 years cycle. Clim Past 3(1):129–134CrossRefGoogle Scholar
  35. Dokken TM, Nisancioglu KH, Li C, Battisti DS, Kissel C (2013) Dansgaard-Oeschger cycles: interactions between ocean and sea ice intrinsic to the Nordic seas. Paleoceanography 28(3):491–502CrossRefGoogle Scholar
  36. EPICA Community Members (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628CrossRefGoogle Scholar
  37. EPICA Community Members (2006) One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444:195–198. doi: 10.1038/nature05301 CrossRefGoogle Scholar
  38. Ezer T, Atkinson LP, Corlett WB, Blanco JL (2013) Gulf stream’s induced sea level rise and variability along the U.S. mid-Atlantic coast. J Geophys Res Oceans 118:685–697. doi: 10.1002/jgrc.20091 CrossRefGoogle Scholar
  39. Flückiger J, Dällenbach A, Blunier T, Stauffer B, Stocker TF, Raynaud D, Barnola J-M (1999) Variations in atmospheric N2O concentration during abrupt climatic changes. Science 285:227–230CrossRefGoogle Scholar
  40. Fuhrer K, Wolff EW, Johnsen SJ (1999) Timescales for dust variability in the Greenland Ice Core Project (GRIP) ice core in the last 100,000 years. J Geophys Res Atmos (1984–2012) 104(D24):31043–31052Google Scholar
  41. Genty D, Blamart D, Ouahdi R, Gilmour M, Baker A, Jouzel J, Van-Exter S (2003) Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data. Nature 421:833–937CrossRefGoogle Scholar
  42. Grootes PM, Stuiver M (1997) Oxygen 18/16 variability in Greenland snow and ice with 103‐to 105‐year time resolution. J Geophys Res Oceans (1978–2012) 102(C12):26455–26470Google Scholar
  43. Grootes PM, Stuiver M, White JWC, Johnsen SJ, Jouzel J (1993) Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366:552–554CrossRefGoogle Scholar
  44. Hall IR, Moran SB, Zahn R, Knutz PC, Shen CC, Edwards RL (2006) Accelerated drawdown of meridional overturning in the late-glacial Atlantic triggered 10 by transient pre-H event freshwater perturbation. Geophys Res Lett 33:L16616. doi: 10.1029/2006GL026239
  45. Heinrich H (1988) Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quat Res 29:142–152CrossRefGoogle Scholar
  46. Held IM, Ting M, Wang H (2002) Northern Winter stationary waves: theory and modeling. J Climate 15:2125–2144. doi: 10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2 CrossRefGoogle Scholar
  47. Hendy IL, Kennett JP, Roark EB, Ingram BL (2002) Apparent synchroneity of submillennial scale climate events between Greenland and Santa Barbara Basin, California from 30–10ka. Quaternary Sci Rev 21(10):1167–1184Google Scholar
  48. Hemming S (2004) Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev Geophys 42: RG1005. doi: 10.1029/2003RG000128
  49. Hu A, Otto-Bliesner BL, Meehl GA, Han W, Morrill C, Brady EC, Briegleb B (2008) Response of thermohaline circulation to freshwater forcing under present-day and LGM conditions. J Climate 21(10):2239–2258 Google Scholar
  50. Hulbe CL, MacAyeal DR, Denton GH, Kleman J, Lowell TV (2004) Catastrophic ice shelf breakup as the source of Heinrich event icebergs. Paleoceanography 19(1). doi: 10.1029/2003PA000890
  51. Huang RX, Cane MA, Naik N, Goodman P (2000) Global adjustment of the thermocline in response to deepwater formation. Geophys Res Lett 27:759–762CrossRefGoogle Scholar
  52. Huber C, Leuenberger M, Spahni R, Flückiger J, Schwander J, Stocker TF, Jouzel J (2006) Isotope calibrated Greenland temperature record over Marine Isotope Stage 3 and its relation to CH 4. Earth Planet Sci Lett 243(3):504–519CrossRefGoogle Scholar
  53. Jonkers L, Moros M, Prins M, Dokken T, Dahl C, Dijkstra N, Perner K, Brummer G (2010) A reconstruction of sea surface warming in the northern North Atlantic during MIS 3 ice-rafting events. Quaternary Sci Rev 29:1791–1800 Google Scholar
  54. Jullien E, Grousset F, Malaize B, Duprat J, Sanchez-Goni MF, Eynaud F, Charlier K, Schneider R, Bory A, Bout V, Flores JA (2007) Low-latitude “dusty events” vs. high-latitude “icy Heinrich events”. Quat Res 68:379–386CrossRefGoogle Scholar
  55. Kageyama M, Paul A, Roche DM, van Meerbeeck CJ (2010) Modelling glacial climatic millennial-scale variability related to changes in the Atlantic meridional overturning circulation: a review. Quat Sci Rev 29:2931–2956CrossRefGoogle Scholar
  56. Kageyama M, Merkel U, Otto-Bliesner B, Prange M, Abe-Ouchi A, Lohmann G, Ohgaito R, Roche DM, Singarayer J, Swingedouw D, Zhang X (2013) Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study. Clim Past 9:935–953CrossRefGoogle Scholar
  57. Krebs U, Timmermann A (2007) Tropical air-sea interactions accelerate the recovery of the Atlantic meridional overturning circulation after a major shutdown. J Clim 20:4940–4956CrossRefGoogle Scholar
  58. Landais A, Caillon N, Goujon C, Grachev AM, Barnola JM, Chappellaz J, Jouzel J, Masson-Delmotte V, Leuenberger M (2004) Quantification of rapid temperature change during DO event 12 and phasing with methane inferred from air isotopic measurements. Earth Planet Sci Lett 225:221–232CrossRefGoogle Scholar
  59. Landais A, Masson-Delmotte V, Jouzel J, Raynaud D, Johnsen S, Huber C, Minster B (2006) The glacial inception as recorded in the North GRIP Greenland ice core: timing, structure and associated abrupt temperature changes. Clim Dyn 26(2–3):273–284CrossRefGoogle Scholar
  60. Landais A, Masson-Delmotte V, Stenni B, Selmo E, Roche DM, Jouzel J, Popp T (2015) A review of the bipolar see–saw from synchronized and high resolution ice core water stable isotope records from Greenland and East Antarctica. Quat Sci Rev 114:18–32CrossRefGoogle Scholar
  61. Lang C, Leuenberger M, Schwander J (1999) 16 °C rapid temperature variation in central Greenland 70,000 years ago. Science 286:934–937CrossRefGoogle Scholar
  62. Lebreiro SM, Moreno JC, McCave IN, Weaver PPE (1996) Evidence for Heinrich layers off Portugal (Tore Seamount: 39° N, 12° W). Mar Geol 131:47–56CrossRefGoogle Scholar
  63. Leuschner DC, Sirocko F (2000) The low-latitude monsoon climate during Dansgaard-Oeschger cycles and Heinrich Events. Quat Sci Rev 22:925–941Google Scholar
  64. MacAyeal DR (1993) Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic’s Heinrich events. Paleoceanography 8(6):775–784CrossRefGoogle Scholar
  65. Manabe S, Stouffer RJ (1988) Two stable equilibria of a coupled ocean-atmosphere model. J Clim 1:841–866CrossRefGoogle Scholar
  66. Margalef O, Cacho I, Pla-Rabes S, Cañellas-Boltà N, Pueyo JJ, Sáez A, Pena LD, Valero-Garcés BL, Rull V, Giralt S (2015) Millennial-scale precipitation variability over Easter Island (South Pacific) during MIS 3: inter-hemispheric teleconnections with North Atlantic abrupt cold events. Clim Past Discuss 11:1407–1435. doi: 10.5194/cpd-11-1407-2015
  67. McCarthy G, Frejka-Williams E, Johns WE, Baringer MO, Meinen CS, Bryden HL, Rayner D, Duchez A, Roberts C, Cunningham SA (2012) Observed interannual variability of the Atlantic Meridional overturning circulation at 26.5 N. Geophys Res Lett 39:L19609. doi: 10.1029/2012GL052933
  68. McManus FJ, Francois R, Gherardi JM, Keigwin LD, Brown-Leger S (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428:834–837CrossRefGoogle Scholar
  69. Menviel L, Timmermann A, Mouchet A, Timm O (2008) Meridional reorganizations of marine and terrestrial productivity during Heinrich events. Paleoceanography 23:PA1203. doi: 10.1029/2007PA001445
  70. Menviel L, England MH, Meissner KJ, Mouchet A, Yu J (2014a) Atlantic-Pacific seesaw and its role in outgassing CO2 during Heinrich events. Paleoceanography 29. doi: 10.1002/2013PA002542
  71. Menviel L, Timmermann A, Friedrich T, England MH (2014b) Hindcasting the continuum of Dansgaard-Oeschger variability: mechanisms, patterns and timing. Clim Past 10(1):63–77CrossRefGoogle Scholar
  72. Merkel U, Prange M, Schulz M (2010) ENSO variability and teleconnections during glacial climates. Quat Sci Rev 29:86–100CrossRefGoogle Scholar
  73. Mo KC (2000) Relationships between interdecadal variability in the Southern Hemisphere and sea surface temperature anomalies. J Clim 13:3599–3610CrossRefGoogle Scholar
  74. Monnin E, Indermühle A, Dällenbach A, Flückiger J, Stauffer B, Stocker TF, Raynaud D, Barnola J-M (2001) Atmospheric CO2 concentrations over the last glacial termination. Science 291:112–114CrossRefGoogle Scholar
  75. Moseley GE, Spötl C, Svensson A, Cheng H, Brandstätter S, Edwards RL (2014) Multi-speleothem record reveals tightly coupled climate between central Europe and Greenland during Marine Isotope Stage 3. Geology 42(12):1043–1046CrossRefGoogle Scholar
  76. Mulitza S, Prange M, Stuut J, Zabel M, von Dobeneck T, Itambi AC, Nizou J, Schulz M, Wefer G (2008) Sahel megadroughts triggered by glacial slowdowns of Atlantic meridional overturning, Paleoceanography 23:PA420. doi: 10.1029/2008PA001637
  77. Muller J, Wüst RAJ, Weiss DJ, Hu Y (2006) Geochemical and stratigraphic evidence of environmental change at Lynch’s Crater, Queensland, Australia. Glob Planet Change 53:269–277CrossRefGoogle Scholar
  78. Mulvaney R, Abram NJ, Hindmarsh RCA, Arrowsmith C, Fleet L, Triest J, Sime LC, Alemany O, Foord S (2012) Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history. Nature 489(7414):141–144CrossRefGoogle Scholar
  79. Niedermeyer EM, Prange M, Mulitza S, Mollenhauer G, Schefuss E, Schulz M (2009) Extratropical forcing of Sahel aridity during Heinrich stadials. Geophys Res Lett 36:L20707. doi: 10.1029/2009GL039687 CrossRefGoogle Scholar
  80. North Greenland Ice Core Project Members. Andersen KK, Azuma N, Barnola JM, Bigler M, Biscaye P, Caillon N, White JWC (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431:147–151Google Scholar
  81. Obrochta SP, Miyahara H, Yokoyama Y, Crowley TJ (2012) A re-examination of evidence for the North Atlantic “1500-year cycle” at Site 609. Quat Sci Rev 55:23–33CrossRefGoogle Scholar
  82. Otto-Bliesner BL, Brady EC (2010) The sensitivity of the climate response to the magnitude and location of freshwater forcing: Last Glacial Maximum experiments. Quat Sci Rev 29:56–73CrossRefGoogle Scholar
  83. Oster JL, Montañez IP, Mertz-Kraus R, Sharp WD, Stock GM, Spero HJ, John Tinsley, James C Zachos (2014) Millennial-scale variationsin western Sierra Nevada precipitation during the last glacial cycle MIS 4/3 transition. Quaternary Res 82(1):236–248 Google Scholar
  84. Parker A, Ollier CD (2016) There is no real evidence for a diminishing trend of the Atlantic meridional overturning circulation. J Ocean Eng Sci 1(1):30–35Google Scholar
  85. Parkinson CL, Cavalieri DJ (2012) Antarctic sea ice variability and trends, 1979–2010. Cryosphere 6(4):871–880CrossRefGoogle Scholar
  86. Pausata FSR, Battisti DS, Nisancioglu KH, Bitz CM (2011) Chinese stalagmite 18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nat Geosci 4:474–480CrossRefGoogle Scholar
  87. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149CrossRefGoogle Scholar
  88. Peterson LC, Haug GH (2006) Variability in the mean latitude of the Atlantic Intertropical Convergence Zone as recorded by riverine input of sediments to the Cariaco Basin (Venezuela). Palaeogeogr Palaeoclimatol Palaeoecol 234(1):97–113Google Scholar
  89. Peterson LC, Haug GH, Hughen KA, Röhl U (2000) Rapid changes in the hydrologic cycle of the tropical North Atlantic during the last glacial. Science 290:1947–1951CrossRefGoogle Scholar
  90. Petersen SV, Schrag DP, Clark PU (2013) A new mechanism for Dansgaard-Oeschger cycles. Paleoceanography 28(1):24–30CrossRefGoogle Scholar
  91. Rahmstorf S (1996) On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim Dyn 12(12):799–811CrossRefGoogle Scholar
  92. Rahmstorf S (2003) Timing of abrupt climate change: a precise clock. Geophys Res Lett 30(10):1510Google Scholar
  93. Rahmstorf S (2006) Thermohaline ocean circulation. In: Elias SA (ed) Encyclopedia of quaternary sciences. Elsevier, AmsterdamGoogle Scholar
  94. Roche D, Paillard D, Cortijo E (2004) Constraints on the duration and freshwater release of Heinrich event 4 through isotope modelling. Nature 432:379–382 Google Scholar
  95. Romanova V, Lohmann G, Grosfeld K, Butzin M (2006) The relative role of oceanic heat transport and orography on glacial climate. Quat Sci Rev 25(7):832–845CrossRefGoogle Scholar
  96. Rossby T, Flagg CN, Donohue K, Sanchez‐Franks A, Lillibridge J (2014) On the long‐term stability of Gulf stream transport based on 20 years of direct measurements. Geophys Res Lett 41(1):114–120Google Scholar
  97. Saha R (2015) Millennial-scale stable oscillations between sea ice and convective deep water formation. Preprint arXiv:1503.03494
  98. Schulz M (2002) On the 1470-year pacing of Dansgaard-Oeschger warm events. Paleoceanography 17(2):1–4CrossRefGoogle Scholar
  99. Schulz H, von Rad U, Erlenkeuser H (1998) Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393:54–57Google Scholar
  100. Schwander J, Sowers T, Barnola J-M, Blunier T, Fuchs A, Malaize B (1997) Age scale of the air in the summit ice: implication for glacial-interglacial temperature change. J Geophys Res 102:19483–19494CrossRefGoogle Scholar
  101. Seager R, Battisti DS (2007) Challenges to our understanding of the general circulation: abrupt climate change. Glob Circ Atmos 331–371Google Scholar
  102. Severinghaus JP, Brook EJ (1999) Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science 286(5441):930–934Google Scholar
  103. Steffensen JP, Andersen KK, Bigler M, Clausen HB, Dahl-Jensen D, Fischer H, Goto-Azuma K, Hansson M, Johnsen SJ, Jouzel J, Masson-Delmotte V, Popp T, Rasmussen SO, Röthlisberger R, Ruth U, Stauffer B, Siggaard-Andersen M, Sveinbjörnsdóttir AE, Svensson A, White JCW (2008) High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 321(5889), 680–684 Google Scholar
  104. Stocker TF, Johnsen SJ (2003) A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18(4):1087. doi: 10.1029/2003PA000920
  105. Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M, Flato GM, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier WR, Robitaille DY, Sokolov A, Vettoretti G, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387. doi: 10.1175/JCLI3689.1 CrossRefGoogle Scholar
  106. Swingedouw D, Mignot J, Braconnot P, Mosquet E, Kageyama M, Alkama R (2009) Impact of freshwater release in the North Atlantic under different climate conditions in an OAGCM. J Clim 22:6377–6403CrossRefGoogle Scholar
  107. Talley LD (2002) Salinity patterns in the ocean. Encyclopedia of global change. In: MacCracken MC, Perry JS (eds) Volume: the earth system: physical and chemical dimensions of global environmental change, pp 629–640Google Scholar
  108. Taylor KC, Lamorey GW, Doyle GA, Alley RB, Grootes PM, Mayewski PA, White JWC, Barlow LK (1993), The flickering switch of late Pleistocene climate change. Nature 361:432–436Google Scholar
  109. Timmermann A, Menviel L, Okumura Y, Schilla A, Merkel U, Timm O, Hu A, Otto-Bliesner B, Schulz M (2010) Towards a quantitative understanding of millennial-scale Antarctic Warming events. Quat Sci Rev 29:74–85Google Scholar
  110. Thomas ER, Wolff EW, Mulvaney R, Johnsen SJ, Steffensen JP, Arrowsmith C (2009) Anatomy of a Dansgaard-Oeschger warming transition: High-resolution analysis of the North Greenland Ice Core Project ice core. J Geophys Res-Atmos, 114(D8) Google Scholar
  111. Vellinga M, Wood RA (2008) Impacts of thermohaline circulation shutdown in the twenty-first century. Clim Change 91(1–2):43–63CrossRefGoogle Scholar
  112. Voelker AHL (2002) Global distribution of centennial-scale records for marine isotope stage (MIS) 3: a database. Quat Sci Rev 21:1185–1212. doi: 10.1016/S0277-3791(01)00139-1 CrossRefGoogle Scholar
  113. Wang Z, Mysak LA (2006) Glacial abrupt climate changes and Dansgaard-Oeschger oscillations in a coupled climate model. Paleoceanography 21(2) Google Scholar
  114. Wagner G, Beer J, Masarik J, Muscheler R, Kubik PW, Mende W, Yiou F (2001) Presence of the solar de Vries cycle (∼205 years) during the last ice age. Geophys Res Lett 28(2):303–306CrossRefGoogle Scholar
  115. Wang YJ, Cheng H, Edwards RL, An ZS, Wu JY, Shen C-C, Dorale JA (2001) A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294:2345–2348CrossRefGoogle Scholar
  116. Wang X, Auler AS, Edwards RL, Cheng H, Cristalli PS, Smart PL, Richards DA, Shen C-C (2004) Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432:740–743. doi: 10.1038/nature03067 CrossRefGoogle Scholar
  117. Wang X, Auler AS, Edwards RL, Cheng H, Ito E, Wang Y, Kong X, Solheid M (2007) Millennial-scale precipitation changes in southern Brazil over the past 90,000 years. Geophys Res Lett 34:1–5Google Scholar
  118. Williams PW, McGlone M, Neil H, Zhao JX (2015) A review of New Zealand palaeoclimate from the Last Interglacial to the global Last Glacial Maximum. Quaternary Sci Rev 110:92–106Google Scholar
  119. Wolff EW, Barbante C, Becagli S, Bigler M, Boutron CF, Castellano E, de Angelis M, Federer U, Fischer H, Fundel F, Hansson M, Hutterli M, Jonsell U, Karlin T, Kaufmann P, Lambert F, Littot GC, Mulvaney R, Röthlisberger R, Ruth U, Severi M, Siggaard-Andersen ML, Sime LC, Steffensen JP, Stocker TF, Traversi R, Twarloh B, Udisti R,Wagenbach D, Wegner A (2010) Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core. Quat Sci Rev 29:285–295Google Scholar
  120. Wunsch C (2006) Abrupt climate change: an alternative view. Quat Res 65:191–203CrossRefGoogle Scholar
  121. Yin J, Goddard PB (2013) Oceanic control of sea level rise patterns along the East Coast of the United States. Geophys Res Lett 40(20):5514–5520. doi: 10.1002/2013GL057992 CrossRefGoogle Scholar
  122. Zhang X, Prange M, Merkel U, Schulz M (2015) Spatial fingerprint and magnitude of changes in the Atlantic meridional overturning circulation during marine isotope stage 3. Geophys Res Lett 42(6):1903–1911CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Eduardo Andrés Agosta
    • 1
    • 2
    • 3
    Email author
  • Rosa Hilda Compagnucci
    • 1
  1. 1.Equipo Interdisciplinario para el Estudio de Procesos Atmosféricos en el Cambio Global [PEPACG], Facultad de Ciencias Físicomatemática e IngenieríaPontificia Universidad Católica Argentina [UCA]Buenos AiresArgentina
  2. 2.Facultad de Ciencias Astronómicas y Geofísica [FACG]Universidad Nacional de La PlataLa PlataArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas [CONICET]Buenos AiresArgentina

Personalised recommendations