Skip to main content

Theory of Mind Engine

  • Chapter
  • First Online:
Computational Autism

Part of the book series: Human–Computer Interaction Series ((HCIS))

Abstract

We build an automated reasoner for the mental world, which approximates human reasoning about mental states and actions. The Theory-of-Mind engine takes an initial mental state and deduces the most plausible consecutive mental states of multiple possibly conflicting agents. The engine is implemented as a logic program – based simulator and serves as a reasoning benchmark to assist with remediation of autistic reasoning about the mental world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajzen I, Fishbein M (1980) Understanding attitudes and predicting social behavior. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Anderson J (1993) Rules of the mind. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Axelrod R (1984) The evolution of cooperation. Basic Books, New York

    MATH  Google Scholar 

  • Baron-Cohen S, Leslie AM, Frith U (1985) Does the autistic child have a “theory of mind”? Cognition 21:37–46

    Article  Google Scholar 

  • Bello P, Cassimatis N (2006) Developmental accounts of theory-of-mind acquisition: achieving clarity via computational cognitive modeling. In: Proceedings of the 28th annual conference of the Cognitive Science Society, pp 1014–1019

    Google Scholar 

  • Bousquet O, Boucheron S, Lugosi G (2004) Introduction to statistical learning theory. Lect Notes in Artif Intell 3176:169–207

    MATH  Google Scholar 

  • Breazeal C (1998) A motivational system for regulating human-robot interactions. In: Proceeding of the fifteenth national conference on AI (AAAI-98)

    Google Scholar 

  • Buzing PC, Eiben AE, Schut MC (2005) Emerging communication and cooperation in evolving agent societies. J Artif Soc Soc Simul 8(1). http://jasss.soc.surrey.ac.uk/8/1/2.html

  • Cassimatis NL (2005) Integrating cognitive models based on different computational methods. Paper presented at the twenty-seventh annual conference of the Cognitive Science Society

    Google Scholar 

  • Chesnevar C, Maguitman A, Loui R (2000) Logical models of argument. ACM Comput Surv 32(4):337–383

    Article  Google Scholar 

  • de Lara J, Alfonseca M (2000) Some strategies for the simulation of vocabulary agreement in multi-agent communities. J Artif Soc Soc Simul 3(4). http://www.soc.surrey.ac.uk/JASSS/3/4/2.html

  • d’Inverno M, Kinny D, Luck M, Wooldridge M (1998) A formal specification of dMARS, Intelligent Agents IV. In Singh, Rao, Wooldridge (eds) Proceedings of the 4th international workshop on agent theories, architectures and languages. LNAI 1365, pp 155–176

    Google Scholar 

  • Fagin R, Halpern JY, Moses Y, Vardi MY (1996) Reasoning about knowledge. MIT Press, Cambridge, MA/London

    MATH  Google Scholar 

  • Gabbay DM (1999) Action, time and default. In: Levesque HJ, Pirri F (eds) Logical foundations for cognitive agents. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Galan JM, Izquierdo LR (2005) Appearances can be deceiving: lessons learned re-implementing Axelrod’s ’evolutionary approach to norms. J Artif Soc Soc Simul 8(3). http://jasss.soc.surrey.ac.uk/8/3/2.html

  • Galitsky B (2002) Extending the BDI model to accelerate the mental development of autistic patients. Second international conference on development & learning. Cambridge, MA

    Google Scholar 

  • Galitsky B (2003) Natural language question answering system: technique of semantic headers. Advanced Knowledge Intl, Adelaide

    Google Scholar 

  • Galitsky B (2004) A library of behaviors: implementing commonsense reasoning about mental world. KES 2004 LNAI 3215, pp 307–313

    Google Scholar 

  • Galitsky B (2006) Reasoning about mental attitudes of complaining customers. Knowl-Based Syst Elsevier 19(7):592–615

    Article  Google Scholar 

  • Galitsky B (2013) A computational simulation tool for training autistic reasoning about mental attitudes. Knowl-Based Syst 50:25–43

    Article  Google Scholar 

  • Galitsky BA, Kuznetsov SO (2008) Learning communicative actions of conflicting human agents. J Exp Theor Artif Intell 20(4):277–317

    Article  MATH  Google Scholar 

  • Galitsky B, González MP, Chesñevar CI (2009) A novel approach for classifying customer complaints through graphs similarities in argumentative dialogues. Decis Support Syst 46(3):717–729

    Article  Google Scholar 

  • Grosz BJ, Kraus S (1996) Collaborative plans for complex group actions. AIJ 86:269–358

    MathSciNet  Google Scholar 

  • Kaiser MD, Shiffrar M (2009) The visual perception of motion by observers with autism spectrum disorders: a review and synthesis. Psychon Bull Rev 16:761–777

    Article  Google Scholar 

  • Kaminka GA, Frenkel I (2005) Flexible teamwork in behavior-based robots. In AAAI-05

    Google Scholar 

  • Kaminka GA, Tambe M (2000) Robust multi-agent teams via socially-attentive monitoring. JAIR 12:105–147

    MATH  Google Scholar 

  • Kennedy WG, Bugajska MD, Harrison AM, Trafton JG (2008) Like-me simulation as an effective and cognitively plausible basis for social robotics. Int J Soc Robot 1(2):181–194

    Article  Google Scholar 

  • Laird JE (2001) It knows what you’re going to do: adding anticipation to a quakebot. In: Proceedings of the fifth international conference on autonomous agents. ACM, New York

    Google Scholar 

  • Levesque HJ, Reiter R, Lesperance Y, Lin F, Scherl RB (1997) GOLOG: a logic programming language for dynamic domains. J Log Program 31:59–84

    Article  MathSciNet  MATH  Google Scholar 

  • Li G, Hopgood AA, Weller MJ (2003) Shifting matrix management: a model for multi-agent cooperation. Eng Appl Artif Intell 16(3):191–201

    Article  Google Scholar 

  • McCarthy J (1995) Making robots conscious of their mental states. In: Proceedings of machine intelligence conference 15

    Google Scholar 

  • Oatley K, Jenkins J (1996) Understanding emotions. Blackwell, Oxford

    Google Scholar 

  • Olivia C, Chang CF, Enguix CF, Ghose AK (1999) Case-based BDI agents: an effective approach for intelligent search on the World Wide Web. Intelligent Agents in cyberspace. Papers from 1999 AAAI spring symposium

    Google Scholar 

  • Parameswaran N (2001) Emotions in Intelligent Agents. FLAIRS-01, Pensacola Beach, pp 82–86

    Google Scholar 

  • Reiter R (1993) Proving properties of states in the situational calculus. AI 64:337–351

    MathSciNet  MATH  Google Scholar 

  • Rich C, Sidner CL (1996) COLLAGEN: a collaboration manager for software interface agents. User Model User-Adap Inter 8(3–4):315–350

    Google Scholar 

  • Rosenbloom PS, Laird JE, Newell A (1993) The SOAR papers. MIT Press, Cambridge, MA

    Google Scholar 

  • Rosenschein J, Zlotkin G (1994) Rules of encounter: designing conventions for automated negotiation among computers. MIT Press, Cambridge, MA

    Google Scholar 

  • Scheutz M (2001) Agents with or without emotions. FLAIRS-01, Pensacola Beach, pp 89–93

    Google Scholar 

  • Shanahan M (1997) Solving the frame problem. MIT Press, Cambridge, MA

    Google Scholar 

  • Shoham Y (1993) Agent oriented programming. Artif Intell 60(1):51–92

    Article  MathSciNet  Google Scholar 

  • Sloman A (2000) Architecture-based conceptions of mind. In: Proceedings of the 11th international congress of logic, methodology and philosophy of science. Kluwer, Dordrecht, p 397

    Google Scholar 

  • Smedslund J (1989) What is psychologic? Recent trends in theoretical psychology. In: Part of the series recent research in psychology, pp 453–457

    Google Scholar 

  • Stein GC, Barnden JA (1995) Towards more flexible and common-sensical reasoning about beliefs. In 1995 AAAI spring symposium on representing mental states and mechanisms. AAAI Press, Menlo Park

    Google Scholar 

  • Stone P, Veloso M (2000) Multiagent systems: a survey from a machine learning perspective. Auton Robot 8(3):345–383

    Article  Google Scholar 

  • Tambe M (1997) Agent architectures for flexible, practical teamwork. In: Proceedings of the national conference on artificial intelligence (AAAI). August, 1997

    Google Scholar 

  • Tamma V, Phelps S, Dickinso I, Wooldridge M (2005) Ontologies for supporting negotiation in e-commerce. Eng Appl Artif Intell 18(2):223–236

    Article  Google Scholar 

  • Trafton GJ, Laura MH, Anthony MH, Franklin PT II, Sangeet SK, Alan CS (2013) ACT-R/E: an embodied cognitive architecture for human-robot interaction. J Hum-Robot Interact 2(1):30–55

    Google Scholar 

  • Walton DN, Krabbe E (1995) Commitment in dialogue. Basic concepts of interpersonal reasoning. State University of New York Press, Albany

    Google Scholar 

  • Weigand H, de Moor A (2004) Argumentation semantics of communicative action. In: Proceedings of the 9th international working conference on the Language-Action Perspective on communication modelling (LAP 2004), Rutgers University, NJ, USA

    Google Scholar 

  • Winograd T, Flores F (1986) Understanding computers and cognition: a new foundation for design. Alex, Norwood

    MATH  Google Scholar 

  • Wooldridge M (2000) Reasoning about rational agents. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  • Yu R, Iung B, Panetto H (2003) A multi-agents based E-maintenance system with case-based reasoning decision support. Eng Appl Artif Intell 16(4):321–333

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Galitsky, B. (2016). Theory of Mind Engine. In: Computational Autism. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39972-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39972-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39971-3

  • Online ISBN: 978-3-319-39972-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics