Multi-Brain BCI: Characteristics and Social Interactions

  • Anton NijholtEmail author
  • Mannes Poel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9743)


We investigate various forms of face-to-face and multiparty interactions in the context of potential brain-computer interface interactions (BCI). BCI has been employed in clinical applications but more recently also in domestic and game and entertainment applications. This paper focusses on multi-party game applications. That is, BCI game applications that allow multiple users and different BCI paradigms to get a cooperative or competitive task done. Our observations are quite preliminary and not yet supported by experimental research. Nevertheless we think we have put forward steps to structure future BCI game research and to make connections with neuro-scientific social interaction research.


Brain-computer interfaces Multi-brain computing Hyper scanning Affective computing Neuroscience of social interaction Games 


  1. 1.
    Jovanovic, N., op den Akker, R., Nijholt, A.: A corpus for studying addressing behavior in multi-party dialogues. J. Lang. Resour. Eval. 40(1), 5–23 (2006)CrossRefGoogle Scholar
  2. 2.
    Reidsma, D., Nijholt, A., Tschacher, W., Ramseyer, F.: Measuring multimodal synchrony for human-computer interaction. In: Sourin, A. (ed.) Proceedings CYBERWORLDS 2010, pp. 67–71. IEEE Computer Society Press, Singapore (2010)CrossRefGoogle Scholar
  3. 3.
    Sun, X., Lichtenauer, J., Valstar, M., Nijholt, A., Pantic, M.: A multimodal database for mimicry analysis. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C. (eds.) ACII 2011, Part I. LNCS, vol. 6974, pp. 367–376. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Bilakhia, S., Petridisa, S., Nijholt, A., Pantic, M.: The MAHNOB mimicry database - a database of naturalistic human interactions. Pattern Recogn. Lett. 66, 52–61 (2015)CrossRefGoogle Scholar
  5. 5.
    Rosenboom, D. (ed.): Biofeedback and the Arts: Results of Early Experiments. A.R.C. Publications, Vancouver (1976)Google Scholar
  6. 6.
    Gürkök, H., Nijholt, A.: Brain-computer interfaces for arts. In: Affective Computing and Intelligent Interaction, pp. 827–831. IEEE Press, New York (2013)Google Scholar
  7. 7.
    Wadeson, A., Nijholt, A., Nam, C.S.: Artistic brain-computer interfaces: current state-of-art of control mechanisms. Brain-Comput. Interfaces 2(2–3), 70–75 (2015)CrossRefGoogle Scholar
  8. 8.
    Stoica, A.: MultiMind: multi-brain signal fusion to exceed the power of a single brain. In: Proceedings of the 3rd Conference on Emerging Security Technologies, pp. 94–98 (2012)Google Scholar
  9. 9.
    Nijholt, A.: Competing and collaborating brains: multi-brain computer interfacing. In: Hassanieu, A.E., Azar, A.T. (eds.) Brain-Computer Interfaces: Current Trends and Applications, pp. 313–335. Springer, Switzerland (2015)Google Scholar
  10. 10.
    Stevens, R, Galloway, T, Berka, C, Behneman A.: A neurophysiologic approach for studying team cognition. In: Proceedings of the Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC), pp. 1–8 (2010)Google Scholar
  11. 11.
    Poli, R., Cinel, C., Matran-Fernandez, A., Sepulveda, F., Stoica, A.: Towards cooperative brain-computer interfaces for space navigation. In: Proceedings of the Intelligent User Interfaces (IUI 2013), pp. 149–159. ACM, New York (2013)Google Scholar
  12. 12.
    Wang, Y., Jung, T.-P.: A collaborative brain-computer interface for improving human performance. PLoS ONE 6(5), 1–11 (2011)Google Scholar
  13. 13.
    Hasson, U., Landesman, O., Knappmeyer, B., Vallines, I., Rubin, N., Heeger, D.J.: Neurocinematics: the neuroscience of film. Projections 2(1), 1–26 (2008)CrossRefGoogle Scholar
  14. 14.
    Zioga, P., Chapman, P., Ma, M., Pollick, F.: A wireless future: performance art, interaction and the brain-computer interfaces. In: Proceedings of the ICLI 2014 - Interface: International Conference on Live Interfaces, pp. 220–230 (2014)Google Scholar
  15. 15.
    Mullen, T., et al.: MindMusic: playful and social installations at the interface between music and the brain. In: Nijholt, A. (ed.) More Playful User Interfaces, pp. 197–229. Springer, Singapore (2015)CrossRefGoogle Scholar
  16. 16.
    Brunner, C., et al.: BNCI horizon 2020: towards a roadmap for the BCI community. Brain-Comput. Interfaces 2(1), 1–10 (2015)CrossRefGoogle Scholar
  17. 17.
    Tangermann, M.W., Krauledat, M., Grzeska, K., Sagebaum, M., Vidaurre, C., Blankertz, B., Muller, K.R.: Playing Pinball with non-invasive BCI. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 21 (NIPS 2008), pp. 1641–1648. Curran Associates, Red Hook (2008)Google Scholar
  18. 18.
    Maby, E., Perrin, M., Bertrand, O., Sanchez, G., Mattout, J.: BCI could make old two-player games even more fun: a proof of concept with “Connect Four”. Adv. Hum.-Comput. Interact. 2012, 8 (2012)CrossRefGoogle Scholar
  19. 19.
    Toersche, H.: Designing a brain-computer interface to chess. In: 7th Twente Student Conference on IT, pp. 1–9. University of Twente, Netherlands (2007)Google Scholar
  20. 20.
    Maruthappan, N., Iyengar, N., Sudip Patel, P.: Brain chess – playing chess using brain computer interface. In: ICBMG 2011 Workshop, IPCSIT, vol. 20, pp. 183–191. IACSIT Press, Singapore (2011)Google Scholar
  21. 21.
    Krepki, R., Blankertz, B., Curio, G., Müller, K.R.: The Berlin brain-computer interface (BBCI)—towards a new communication channel for online control in gaming applications. Multimed Tools Appl. 33(1), 73–90 (2007)CrossRefGoogle Scholar
  22. 22.
    Hjelm, S.I., Browall, C.: Brainball: using brain activity for cool competition. In: Proceedings of the First Nordic Conference on Computer-Human Interaction (NordiCHI 2000), Stockholm, Sweden (2000)Google Scholar
  23. 23.
    Nigay, L., Coutaz, J.: A design space for multimodal systems: concurrent processing and data fusion. In: INTERACT 1993 and CHI 1993 Conference on Human Factors in Computing Systems (CHI 1993), pp. 172–178. ACM, New York (1993)Google Scholar
  24. 24.
    Bunt, H., Kipp, M., Maybury, M., Wahlster, W.: Fusion and coordination for multimodal interactive information presentation. In: Stock, O., Zancanaro, M. (eds.) Multimodal Intelligent Information Presentation, pp. 325–339. Springer, Berlin (2005)Google Scholar
  25. 25.
    Turk, M.: Multimodal interaction: a review. Pattern Recogn. Lett. 36, 189–195 (2014)CrossRefGoogle Scholar
  26. 26.
    Gürkök, H., Hakvoort, G., Poel, M.: Modality switching and performance in a thought and speech controlled computer game. In: 13th International Conference on Multimodal Interfaces (ICMI 2011), pp. 41–48. ACM, New York (2011)Google Scholar
  27. 27.
    Kapeller, C., Ortner, R., Krausz, G., Bruckner, M., Allison, B.Z., Guger, C., Edlinger, G.: Toward multi-brain communication: collaborative spelling with a P300 BCI. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) AC 2014. LNCS, vol. 8534, pp. 47–54. Springer, Heidelberg (2014)Google Scholar
  28. 28.
    Cecotti, H., Rivet, B.: Subject combination and electrode selection in cooperative brain-computer interface based on event related potentials. Brain Sci. 2014(4), 335–355 (2014)CrossRefGoogle Scholar
  29. 29.
    Stoica, A., Matran-Fernandez, A., Andreou, D., Poli, R., Cinel, C., Iwashita, Y., Padgett, C.: Multi-brain fusion and applications to intelligence analysis. In: SPIE 8756, Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications, 87560N (2013)Google Scholar
  30. 30.
    Mühl, C., et al.: Bacteria hunt: evaluating multi-paradigm BCI interaction. J. Multimodal User Interfaces 4(1), 11–25 (2010)CrossRefGoogle Scholar
  31. 31.
    Pfurtscheller, G., Allison, B.Z., Brunner, C., Bauernfeind, G., Solis-Escalante, T., Scherer, R., Zander, T.O., Mueller-Putz, G., Neuper, C., Birbaumer, N.: The hybrid BCI. Front Neurosci. 4(30), 1–11 (2010) Google Scholar
  32. 32.
    Molina, G.G., Tsoneva, T., Nijholt, A.: Emotional brain-computer interfaces. Int. J. Auton. Adapt. Commun. Syst. 6(1), 9–25 (2013)CrossRefGoogle Scholar
  33. 33.
    Fan, Y.-Y., Sciotto, F.M.: BioSync: an informed participatory interface for audience dynamics and audiovisual content co-creation using mobile PPG and EEG. In: NIME 2013, KAIST, Daejeon, Korea (2013)Google Scholar
  34. 34.
    Stocco, A., Prat, C.S., Losey, D.M., Cronin, J.A., Wu, J., Abernethy, J.A., Rao, R.P.N.: Playing 20 questions with the mind: collaborative problem solving by humans using a brain-to-brain interface. PLoS ONE 10(9), e0137303 (2015)CrossRefGoogle Scholar
  35. 35.
    Babiloni, F., Cincotti, F., Mattia, D., Mattiocco, M., Fallani, D.V.F., Tocci, A., Bianchi, L., Marciani, M.G., Astolfi, L.: Hypermethods for EEG hyperscanning. In: Proceedings of the IEEE Engineering in Medicine and Biology Society (EMBC), vol. 1, pp. 3666–3669. New York, USA (2006)Google Scholar
  36. 36.
    Babiloni, F., Astolfi, L.: Social neuroscience and hyperscanning techniques: past, present and future. Neurosci. Biobehav. Rev. 44, 76–93 (2014)CrossRefGoogle Scholar
  37. 37.
    Dijkstra, K.V., Brunner, P., Gunduz, A., Coon, W., Ritaccio, A.L., Farquhar, J., Schalk, G.: Identifying the attended speaker using electrocorticographic (ECoG) signals. Brain-Comput. Interfaces 2(4), 61–173 (2015)CrossRefGoogle Scholar
  38. 38.
    Delaherche, E., Dumas, G., Nadel, J., Chetouani, M.: Automatic measure of imitation during social interaction: a behavioral and hyperscanning-EEG benchmark. Pattern Recogn. Lett. 66, 118–126 (2015)CrossRefGoogle Scholar
  39. 39.
    Mattout, J.: Brain-computer interfaces: a neuroscience paradigm of social interaction? A matter of perspective. Front. Hum. Neurosci. 6, 114 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of TwenteEnschedeThe Netherlands
  2. 2.Imagineering InstituteIskandarMalaysia

Personalised recommendations