Evaluating Neural Correlates of Constant-Therapy Neurorehabilitation Task Battery: An fNIRS Pilot Study

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9743)

Abstract

The development of cognitive task battery applications for rehabilitation in telemedicine is a rapidly evolving field, with several tablet or web based programs already helping those suffering from working memory dysfunction or attention deficit disorders. However, there is little physiological evidence supporting a measurably significant change in brain function from using these programs. The present study sought to provide an initial assessment using the portable and wearable neuroimaging modality of functional near-infrared spectroscopy (fNIRS) that can be used in ambulatory and home settings and has the potential to add value in the assessment of clinical patients’ recovery throughout their therapy.

Keywords

Functional near-infrared spectroscopy fNIRS Cognitive test battery Neural rehabilitation Telemedicine Neuroergonomics 

Notes

Acknowledgements

The authors would like to thank Dr. Veera Anantha for his help with access to the Constant Therapy tasks.

References

  1. 1.
  2. 2.
  3. 3.
    Oh, J.Y., Park, Y.T., Jo, E.C., Kim, S.M.: Current status and progress of telemedicine in Korea and other countries. Healthc. Inform. Res. 21, 239–243 (2015)CrossRefGoogle Scholar
  4. 4.
    Riegler, L.J., Neils-Strunjas, J., Boyce, S., Wade, S.L., Scheifele, P.M.: Cognitive intervention results in web-based videophone treatment adherence and improved cognitive scores. Med. Sci. Monit. 19, 269–275 (2013)CrossRefGoogle Scholar
  5. 5.
    Gaggioli, A., Meneghini, A., Morganti, F., Alcaniz, M., Riva, G.: A strategy for computer-assisted mental practice in stroke rehabilitation. Neurorehabil. Neural Repair 20, 503–507 (2006)CrossRefGoogle Scholar
  6. 6.
    Varley, R., Cowell, P.E., Dyson, L., Inglis, L., Roper, A., Whiteside, S.P.: Self-administered computer therapy for apraxia of speech: two-period randomized control trial with crossover. Stroke 47, 822–828 (2016) Google Scholar
  7. 7.
    Parasuraman, R., Lee, J.D., Kirlik, A.: Neuroergonomics: Brain-Inspired Cognitive Engineering. Oxford University PressGoogle Scholar
  8. 8.
    Mehta, R.K., Parasuraman, R.: Neuroergonomics: a review of applications to physical and cognitive work. Front. Hum. Neurosci. 7, 889 (2013)CrossRefGoogle Scholar
  9. 9.
    Derosière, G., Mandrick, K., Dray, G., Ward, T.E., Perrey, S.: NIRS-measured prefrontal cortex activity in neuroergonomics: strengths and weaknesses. Front. Hum. Neurosci. 7, 583 (2013)CrossRefGoogle Scholar
  10. 10.
    Carrieri, M., Petracca, A., Lancia, S., Basso Moro, S., Brigadoi, S., Spezialetti, M., Ferrari, M., Placidi, G., Quaresima, V.: Prefrontal cortex activation upon a demanding virtual hand-controlled task: a new frontier for neuroergonomics. Front. Hum. Neurosci. 10, 53 (2016)CrossRefGoogle Scholar
  11. 11.
    Ayaz, H., Shewokis, P.A., Bunce, S., Izzetoglu, K., Willems, B., Onaral, B.: Optical brain monitoring for operator training and mental workload assessment. NeuroImage 59, 36–47 (2012)CrossRefGoogle Scholar
  12. 12.
    Kiran, S., Roches, C.D., Balachandran, I., Ascenso, E.: Development of an impairment-based individualized treatment workflow using an iPad-based software platform. Semin. Speech Lang. 35, 038–050 (2014)CrossRefGoogle Scholar
  13. 13.
    Des Roches, C.A., Balachandran, I., Ascenso, E.M., Tripodis, Y., Kiran, S.: Effectiveness of an impairment-based individualized rehabilitation program using an iPad-based software platform. Front. Hum. Neurosci. 8 (2015)Google Scholar
  14. 14.
    Dang, J., Zhang, J., Guo, Z., Lu, W., Cai, J., Shi, Z., Zhang, C.: A pilot study of iPad-assisted cognitive training for schizophrenia. Arch. Psychiatr. Nurs. 28, 197–199 (2014)CrossRefGoogle Scholar
  15. 15.
    Westerberg, H., Jacobaeus, H., Hirvikoski, T., Clevberger, P., Östensson, M.L., Bartfai, A., Klingberg, T.: Computerized working memory training after stroke–a pilot study. Brain Inj. 21, 21–29 (2007)CrossRefGoogle Scholar
  16. 16.
    Bogdanova, Y., Yee, M.K., Ho, V.T., Cicerone, K.D.: Computerized cognitive rehabilitation of attention and executive function in acquired brain injury: a systematic review. J. Head Trauma Rehabil. (2015). (Epub ahead of print)Google Scholar
  17. 17.
    Ayaz, H., Shewokis, P.A., Scull, L., Libon, D.J., Feldman, S., Eppig, J., Onaral, B., Heiman-Patterson, T.: Assessment of prefrontal cortex activity in amyotrophic lateral sclerosis patients with functional near infrared spectroscopy. J. Neurosci. Neuroeng. 3, 41–51 (2014)CrossRefGoogle Scholar
  18. 18.
    Melby-Lervag, M., Hulme, C.: Is working memory training effective? A meta-analytic review. Dev. Psychol. 49, 270–291 (2013)CrossRefGoogle Scholar
  19. 19.
    Smith, S.P., Stibric, M., Smithson, D.: Exploring the effectiveness of commercial and custom-built games for cognitive training. Comput. Hum. Behav. 29, 2388–2393 (2013)CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Molteni, E., Contini, D., Caffini, M., Baselli, G., Spinelli, L., Cubeddu, R., Cerutti, S., Bianchi, A.M., Torricelli, A.: Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty. J. Biomed. Opt. 17, 056005 (2012)CrossRefGoogle Scholar
  22. 22.
    Ayaz, H., Shewokis, P.A., Curtin, A., Izzetoglu, M., Izzetoglu, K., Onaral, B.: Using mazesuite and functional near infrared spectroscopy to study learning in spatial navigation. J. Vis. Exp. 56, 3443 (2011)Google Scholar
  23. 23.
    Fishburn, F.A., Norr, M.E., Medvedev, A.V., Vaidya, C.J.: Sensitivity of fNIRS to cognitive state and load. Front. Hum. Neurosci. 8, 76 (2014)CrossRefGoogle Scholar
  24. 24.
    Ayaz, H., Onaral, B., Izzetoglu, K., Shewokis, P.A., McKendrick, R., Parasuraman, R.: Continuous monitoring of brain dynamics with functional near infrared spectroscopy as a tool for neuroergonomic research: empirical examples and a technological development. Front. Hum. Neurosci. 7, 871 (2013)CrossRefGoogle Scholar
  25. 25.
    Ayaz, H.: Functional Near Infrared Spectroscopy Based Brain Computer Interface. Drexel University, Philadelphia, PA (2010)Google Scholar
  26. 26.
    Ayaz, H., Izzetoglu, M., Shewokis, P.A., Onaral, B.: Sliding-window motion artifact rejection for functional near-infrared spectroscopy. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 6567–6570 (2010)Google Scholar
  27. 27.
    Ruocco, A.C., Rodrigo, A.H., Lam, J., Di Domenico, S.I., Graves, B., Ayaz, H.: A problem-solving task specialized for functional neuroimaging: validation of the Scarborough adaptation of the Tower of London (S-TOL) using near-infrared spectroscopy. Front. Hum. Neurosci. 8, 185 (2014)CrossRefGoogle Scholar
  28. 28.
    Hasan, A., Ben, W., Scott, B., Patricia, A.S., Kurtulus, I., Sehchang, H., Atul, R.D., Banu, O.: Cognitive workload assessment of air traffic controllers using optical brain imaging sensors. In: Advances in Understanding Human Performance, pp. 21–31. CRC Press (2010)Google Scholar
  29. 29.
    Gateau, T., Durantin, G., Lancelot, F., Scannella, S., Dehais, F.: Real-time state estimation in a flight simulator using fNIRS. PLoS One 10, e0121279 (2015)CrossRefGoogle Scholar
  30. 30.
    Durantin, G., Gagnon, J.F., Tremblay, S., Dehais, F.: Using near infrared spectroscopy and heart rate variability to detect mental overload. Behav. Brain Res. 259, 16–23 (2014)CrossRefGoogle Scholar
  31. 31.
    McKendrick, R., Ayaz, H., Olmstead, R., Parasuraman, R.: Enhancing dual-task performance with verbal and spatial working memory training: continuous monitoring of cerebral hemodynamics with NIRS. NeuroImage 85(3), 1014–1026 (2014)CrossRefGoogle Scholar
  32. 32.
    Yuksel, B.F., Oleson, K.B., Harrison, L., Peck, E.M., Afergan, D., Chang, R., Jacob, R.J.: Learn piano with BACh: an adaptive learning interface that adjusts task difficulty based on brain state. In: CHI 2016 (2016)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Biomedical Engineering, Science, and Health SystemsDrexel UniversityPhiladelphiaUSA
  2. 2.Department of Family and Community HealthUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Division of General PediatricsChildren’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations