Skip to main content

Multiscale Model Reduction Methods for Flow in Heterogeneous Porous Media

  • Conference paper
  • First Online:
  • 1430 Accesses

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 112))

Abstract

In this paper we provide a general framework for model reduction methods applied to fluid flow in porous media. Using reduced basis and numerical homogenization techniques we show that the complexity of the numerical approximation of Stokes flow in heterogeneous media can be drastically reduced. The use of such a computational framework is illustrated at several model problems such as two and three scale porous media.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Abdulle, Y. Bai, Adaptive reduced basis finite element heterogeneous multiscale method. Comput. Methods Appl. Mech. Eng. 257, 201–220 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Abdulle, O. Budáč, An adaptive finite element heterogeneous multiscale method for Stokes flow in porous media. Multiscale Model. Simul. 13, 256–290 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Abdulle, O. Budáč, A Petrov–Galerkin reduced basis approximation of the Stokes equation in parameterized geometries. C. R. Math. Acad. Sci. Paris 353 (7), 641–645 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Abdulle, O. Budáč, A reduced basis finite element heterogeneous multiscale method for Stokes flow in porous media. Accept. Comp. Methods Appl. Mech. Eng. (2015)

    MATH  Google Scholar 

  5. A. Abdulle, O. Budáč, A three-scale offline-online numerical method for fluid flow in porous media (2016, preprint)

    Google Scholar 

  6. G. Allaire, Homogenization of the Stokes flow in a connected porous medium. Asymptot. Anal. 2 (3), 203–222 (1989)

    MathSciNet  MATH  Google Scholar 

  7. G. Allaire, Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes I. abstract framework, a volume distribution of holes. Arch. Ration. Mech. Anal. 113 (3), 209–259 (1991)

    Google Scholar 

  8. S. Alyaev, E. Keilegavlen, J.M. Nordbotten, Analysis of control volume heterogeneous multiscale methods for single phase flow in porous media. Multiscale Model. Simul. 12 (1), 335–363 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Barrault, Y. Maday, N.-C. Nguyen, A. T. Patera, An ‘empirical interpolation method’: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris 339, 667–672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. D.L. Brown, Y. Efendiev, V.H. Hoang, An efficient hierarchical multiscale finite element method for Stokes equations in slowly varying media. Multiscale Model. Simul. 11 (1), 30–58 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. D.L. Brown, P. Popov, Y. Efendiev, On homogenization of Stokes flow in slowly varying media with applications to fluid-structure interaction. GEM Int. J. Geomath. 2 (2), 281–305 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Darcy, Les fontaines publiques de la ville de Dijon: Exposition et application á suivre et des formules á employer dans les questions de duistribution deau (1856)

    Google Scholar 

  13. M. Griebel, M. Klitz, Homogenization and numerical simulation of flow in geometries with textile microstructures. Multiscale Model. Simul. 8 (4), 1439–1460 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. V.H. Hoang, C. Schwab, High-dimensional finite elements for elliptic problems with multiple scales. Multiscale Model. Simul. 3 (1), 168–194 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. N.A. Pierce, M.B. Giles, Adjoint recovery of superconvergent functionals from PDE approximations. SIAM Rev. 42 (2), 247–264 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. E. Sánchez-Palencia, Non-homogeneous Media and Vibration Theory. Lecture Notes in Physics, vol. 127 (Springer, Berlin, 1980)

    Google Scholar 

  17. L. Tartar, Appendix, in Incompressible Fluid Flow in a Porous Medium—Convergence of the Homogenization Process. Lecture Notes in Physics, vol. 127, [16], 1979, pp. 368–377

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assyr Abdulle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Abdulle, A., Budáč, O. (2016). Multiscale Model Reduction Methods for Flow in Heterogeneous Porous Media. In: Karasözen, B., Manguoğlu, M., Tezer-Sezgin, M., Göktepe, S., Uğur, Ö. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2015. Lecture Notes in Computational Science and Engineering, vol 112. Springer, Cham. https://doi.org/10.1007/978-3-319-39929-4_32

Download citation

Publish with us

Policies and ethics