Skip to main content

A Posteriori Error Estimates for Nonstationary Problems

  • Conference paper
  • First Online:
Book cover Numerical Mathematics and Advanced Applications ENUMATH 2015

Abstract

We apply continuous and discontinuous Galerkin time discretization together with standard finite element method for space discretization to the heat equation. For the numerical solution arising from these discretizations we present a guaranteed and fully computable a posteriori error upper bound. Moreover, we present local asymptotic efficiency estimate of this bound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Akrivis, C. Makridakis, R.H. Nochetto, Optimal order a posteriori error estimates for a class of Runge-Kutta and Galerkin methods. Numer. Math. 114 (1), 133–160 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Akrivis, C. Makridakis, R.H. Nochetto, Galerkin and Runge-Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence. Numer. Math. 118 (3), 429–456 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Braess, J. Schőberl, Equilibrated residual error estimator for edge elements. Math. Comput. 77 (262), 651–672 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. V. Dolejší, A. Ern, M. Vohralík., A framework for robust a posteriori error control in unsteady nonlinear advection-diffusion problems. SIAM J. Numer. Anal. 51 (2), 773–793 (2013)

    Google Scholar 

  5. A. Ern, M. Vohralík. Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM J. Numer. Anal. 53 (2), 1058–1081 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Hairer, S.P. Norsett, G. Wanner. Solving Ordinary Differential Equations I, Nonstiff Problems. Springer Series in Computational Mathematics, vol. 8 (Springer, Berlin/Heidelberg/New York, 2000)

    Google Scholar 

  7. E. Hairer, G. Wanner. Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems (Springer, Berlin, 2002)

    MATH  Google Scholar 

  8. B.L. Hulme One-step piecewise polynomial Galerkin methods for initial value problems. Math. Comput. 26, 415–426 (1972)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the project GA UK No. 92315 of the Charles University in Prague (F. Roskovec) and by the Grant No. 13-00522S of the Czech Science Foundation (V. Dolejší, M. Vlasák).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloslav Vlasák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Dolejší, V., Roskovec, F., Vlasák, M. (2016). A Posteriori Error Estimates for Nonstationary Problems. In: Karasözen, B., Manguoğlu, M., Tezer-Sezgin, M., Göktepe, S., Uğur, Ö. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2015. Lecture Notes in Computational Science and Engineering, vol 112. Springer, Cham. https://doi.org/10.1007/978-3-319-39929-4_23

Download citation

Publish with us

Policies and ethics