New Emergency Medicine Paradigm via Augmented Telemedicine

  • Gregorij Kurillo
  • Allen Y. Yang
  • Victor Shia
  • Aaron Bair
  • Ruzena Bajcsy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9740)

Abstract

In many emergency scenarios, medical care is initially provided by first responders in the field and later by physicians at designated centers. In the setting of traumatic injury, the so-called “golden hour,” the efficiency of patient triage and medical transport may greatly affect the outcomes of emergency treatment. In current practice, the initial communication and interaction between physician and first responders is limited to voice or, in rare instances, video conferencing, while the attending physicians cannot receive other more comprehensive, critical patient information. This paper proposes to address these fundamental technology gaps and information bottlenecks by leveraging the state-of-the-art 3D teleimmersion and augmented reality (AR) technologies.

Keywords

Telemedicine Virtual reality Augmented reality Collaboration Remote interaction Emergency medicine 

References

  1. 1.
    Nesbitt, T.S., Marcin, J.P., Daschbach, M.M., Cole, S.L.: Perceptions of local health care quality in 7 rural communities with telemedicine. J. Rural Health 21(1), 79–85 (2006)CrossRefGoogle Scholar
  2. 2.
    Wilson, L.S., Maeder, A.J.: Recent directions in telemedicine: review of trends in research and practice. Health Inform. Res. 21(4), 213–222 (2015)CrossRefGoogle Scholar
  3. 3.
    Simpson, A.T.: A brief history of NASA’s contributions to telemedicine. http://www.nasa.gov/content/a-brief-history-of-nasa-s-contributions-to-telemedicine. Accessed 10 Feb 2016
  4. 4.
    Freiburger, G., Holcomb, M., Piper, D.: The STARPAHC collection: part of an archive of the history of telemedicine. J. Telemed. Telecare. 13(5), 221–223 (2007)CrossRefGoogle Scholar
  5. 5.
    Garshnek, V., Burkle, F.M.: Applications of telemedicine and telecommunications to disaster medicine. J. Am. Med. Inform. Assoc. 6(1), 26–37 (1999)CrossRefGoogle Scholar
  6. 6.
    Nicogossian, A.E., Doarn, C.R.: Armenia 1988 earthquake and telemedicine: lessons learned and forgotten. Telemed. E-Health 17(9), 741–745 (2011)CrossRefGoogle Scholar
  7. 7.
    Ling, G.S., Rhee, P., Ecklund, J.M.: Surgical innovations arising from the Iraq and Afghanistan wars. Annu. Rev. Med. 61, 457–468 (2010)CrossRefGoogle Scholar
  8. 8.
    Nesbitt, T.S., Dharmar, M., Katz-Bell, J., Hartvigsen, G., Marcin, J.P.: Telehealth at UC Davis—a 20-year experience. Telemed. E-Health 19(5), 357–362 (2013)CrossRefGoogle Scholar
  9. 9.
    Telehealth Resource Center. http://www.telehealthresourcecenter.org. Accessed 10 Feb 2016
  10. 10.
    Ward, M.M., Jaana, M., Natafgi, N.: Systematic review of telemedicine applications in emergency rooms. Int. J. Med. Inform. 84(9), 601–616 (2015)CrossRefGoogle Scholar
  11. 11.
    Mandellos, G.J., Lymperopoulos, D.K., Koukias, M.N., Tzes, A., Lazarou, N., Vagianos, C.: A novel mobile telemedicine system for ambulance transport. Design and evaluation. In: Proceedings of the IEEE Engineering in Medicine and Biology Society (IEMBS), San Francisco, CA (2004)Google Scholar
  12. 12.
    Boniface, K.S., Shokoohi, H., Smith, E.R., Scantlebury, K.: Tele-ultrasound and paramedics: real-time remote physician guidance of the focused assessment with sonography for trauma examination. Am. J. Emerg. Med. 29(5), 477–481 (2011)CrossRefGoogle Scholar
  13. 13.
    Satava, R.M.: Virtual reality and telepresence for military medicine. Comput. Biol. Med. 25(2), 229–236 (1995)CrossRefGoogle Scholar
  14. 14.
    Doherty-Sneddon, G., Anderson, A., O’Malley, C., Langton, S., Garrod, S., Bruce, V.: Face-to-face and video-mediated communication: a comparison of dialogue structure and task performance. J. Exp. Psychol. Appl. 3(2), 105–125 (1997)CrossRefGoogle Scholar
  15. 15.
    DeFanti, T., Sandin, D., Brown, M., Pape, D., Anstey, J., Bogucki, M., Dawe, G., Johnson, A., Huang, T.S.: Technologies for virtual reality/tele-immersion applications: issues of research in image display and global networking. In: Earnshaw, R.A., Guedj, R.A., van Dam, A., Vince, J.A. (eds.) Frontiers of Human-Centered Computing, Online Communities and Virtual Environments, pp. 137–159. Springer, London (1999)Google Scholar
  16. 16.
    Kurillo, G., Bajcsy, R.: 3D teleimmersion for collaboration and interaction of geographically distributed users. Virtual Reality 17(1), 29–43 (2013)CrossRefGoogle Scholar
  17. 17.
    Sarbolandi, H., Lefloch, D., Kolb, A.: Kinect range sensing: structured-light versus time-of-flight Kinect. Comput. Vis. Image Underst. 139, 1–20 (2015)CrossRefGoogle Scholar
  18. 18.
    Yang, L., Zhang, L., Dong, H., Alelaiwi, A.El, Saddik, A.: Evaluating and improving the depth accuracy of Kinect for Windows v2. IEEE Sens. J. 15(8), 4275–4285 (2015)CrossRefGoogle Scholar
  19. 19.
    Anton-Saez, D., Kurillo, G., Goñi, A., Illarramendi, A., Bajcsy, R.: Real-time communication for Kinect-based tele-rehabilitation. Technical report (2014)Google Scholar
  20. 20.
    Damianos, L., Hirschman, L., Kozierok, R., Kurtz, J., Greenberg, A., Walls, K., Laskowski, S., Scholtz, J.: Evaluation for collaborative systems. ACM Comput. Surv. (CSUR) 31(2), 15 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gregorij Kurillo
    • 1
  • Allen Y. Yang
    • 1
  • Victor Shia
    • 1
  • Aaron Bair
    • 2
  • Ruzena Bajcsy
    • 1
  1. 1.University of California at BerkeleyBerkeleyUSA
  2. 2.University of California Davis Medical CenterSacramentoUSA

Personalised recommendations