Advertisement

Olfactory Stimuli Increase Presence During Simulated Exposure

  • Benson G. Munyan
  • Sandra M. Neer
  • Deborah C. Beidel
  • Florian Jentsch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9740)

Abstract

Exposure therapy (EXP) is an extensively studied and supported treatment for anxiety and trauma-related disorders. EXP works by exposing the patient to the feared object or situation in the absence of danger in order to overcome the related anxiety. Various technologies including head-mounted displays (HMDs), scent machines, and headphones have been used to augment the exposure therapy process by presenting multi-sensory cues (e.g., sights, smells, sounds) to increase the patient’s sense of presence. Studies have shown that scents can elicit emotionally charged memories, but no prior research could be identified that examined the effect of olfactory stimuli upon the patient’s sense of presence during simulated exposure tasks. Methods: 60 adult participants navigated a mildly anxiety-producing virtual environment (VE) similar to those used in the treatment of anxiety disorders. Participants were screened for olfactory dysfunction and history of seizures. Participants completed questionnaires pertaining to their (a) tendency to immerse themselves in activities and (b) current health. Visual exploration and presence ratings were collected throughout the experiment. Results: Linear Mixed Modeling showed statistically significant relationships between olfactory stimuli and presence as assessed by both the In group Presence Questionnaire (IPQ: R2 =.85, (F(3,52) = 6.625, p =.0007) and a single item visual-analogue scale (R2 = .85, (F(3,52) = 5.382, p = .0027).

Keywords

Exposure therapy Presence Augmented reality Olfaction Immersion 

Notes

Acknowledgements

This research was supported by a Grant-In-Aid of Research from Sigma Xi, The Scientific Research Society. We wish to thank Fallen Planet Studios for VE consulting and creation.

Author disclosure statements.

No competing financial interests exist.

References

  1. 1.
    Lombard, M., Ditton, T.: At the heart of it all: The concept of presence. J. Comput. Mediated Commun. 3 (1997)Google Scholar
  2. 2.
    Slater, M., Pertaub, D.P., Steed, A.: Public speaking in virtual reality: Facing an audience of avatars. IEEE Comput. Graph. Appl. 19, 6–9 (1999)CrossRefGoogle Scholar
  3. 3.
    Hodges, L.F., Kooper, R., Meyer, T.C., De Graaff, J.J.H., Rothbaum, B.O., Opdyke, D., Williford, J.S., North, M.M.: Presence as the defining factor in a VR application (1994)Google Scholar
  4. 4.
    Parsons, T.D., Rizzo, A.A.: Affective outcomes of virtual reality exposure therapy for anxiety and specific phobias: a meta-analysis. J. Behav. Ther. Exp. Psychiatry 39, 250–261 (2008)CrossRefGoogle Scholar
  5. 5.
    Owens, M.E.: Does virtual reality elicit physiological arousal in social anxiety disorder. In: Psychology. University of Central Florida (2013)Google Scholar
  6. 6.
    Powers, M.B., Emmelkamp, P.M.G.: Virtual reality exposure therapy for anxiety disorders: A meta-analysis. J. Anxiety Disord. 22, 561–569 (2008)CrossRefGoogle Scholar
  7. 7.
    Rothbaum, B.O., Hodges, L.F., Ready, D., Graap, K., Alarcon, R.D.: Virtual reality exposure ther-apy for Vietnam veterans with posttraumatic stress disorder. J. Clin. Psychiatry 62, 617–622 (2001)CrossRefGoogle Scholar
  8. 8.
    Rothbaum, B.O., Hodges, L., Alarcon, R., Ready, D., Shahar, F., Graap, K., Pair, J., Hebert, P., Gotz, D., Wills, B.: Virtual reality exposure therapy for PTSD Vietnam veterans: A case study. J. Trauma. Stress 12, 263–271 (1999)CrossRefGoogle Scholar
  9. 9.
    Difede, J., Hoffman, H.G.: Virtual reality exposure therapy for World Trade Center post-traumatic stress disorder: A case report. Cyberpsychology Behav. 5, 529–535 (2002)CrossRefGoogle Scholar
  10. 10.
    Mclay, R.N., Wood, D.P., Webb-Murphy, J.A., Spira, J.L., Wiederhold, M.D., Pyne, J.M., Wiederhold, B.K.: A randomized, controlled trial of virtual reality-graded exposure therapy for post-traumatic stress disorder in active duty service members with combat-related post-traumatic stress disorder. Cyberpsychology Behav. Soc. Netw. 14, 223–229 (2011)CrossRefGoogle Scholar
  11. 11.
    Butler, A.C., Chapman, J.E., Forman, E.M., Beck, A.T.: The empirical status of cognitive-behavioral therapy: a review of meta-analyses. Clin. Psychol. Rev. 26, 17–31 (2006)CrossRefGoogle Scholar
  12. 12.
    Myers, K.M., Davis, M.: Mechanisms of fear extinction. Mol. Psychiatry 12, 120–150 (2007)CrossRefGoogle Scholar
  13. 13.
    Rescorla, R.A.: Extinction can be enhanced by a concurrent excitor. J. Exp. Psychol. Anim. Behav. Processes 26, 251–260 (2000)CrossRefGoogle Scholar
  14. 14.
    Thomas, B.L., Ayres, J.J.B.: Use of the ABA fear renewal paradigm to assess the effects of ex-tinction with co-present fear inhibitors or excitors: Implications for theories of extinction and for treating human fears and phobias. Learn. Motiv. 35, 22–52 (2004)CrossRefGoogle Scholar
  15. 15.
    Rescorla, R.A.: Deepened extinction from compound stimulus presentation. J. Exp. Psychol. Anim. Behav. Processes 32, 135–144 (2006)CrossRefGoogle Scholar
  16. 16.
    Anderson, D.B., Casey, M.A.: The sound dimension. IEEE Spectr. 34, 46–51 (1997)CrossRefGoogle Scholar
  17. 17.
    Barfield, W., Zeltzer, D., Sheridan, T., Slater, M.: Virtual Environments and A dvanced Interface Design Virtual Environments and Advanced Interface Design, pp. 473–513. Oxford University Press, New York (1995)Google Scholar
  18. 18.
    Kim, T.: Effects of presence on memory and persuasion. University of North Carolina: Chapel Hill, NC (1996)Google Scholar
  19. 19.
    Short, J., Williams, E., Christie, B.: The social psychology of telecommunications. Wiley, New York (1976)Google Scholar
  20. 20.
    Bouchard, S., Côté, S., St-Jacques, J., Robillard, G., Renaud, P.: Effectiveness of virtual reality exposure in the treatment of arachnophobia using 3D games. Technol. Health Care 14, 19–27 (2006)Google Scholar
  21. 21.
    Welch, R.B., Blackmon, T.T., Liu, A., Mellers, B.A., Stark, L.W.: The effects of pictorial realism, delay of visual feedback, and observer interactivity on the subjective sense of presence. Presence Teleoperators Virtual Environ. 5, 263–273 (1996)CrossRefGoogle Scholar
  22. 22.
    Hendrix, C., Barfield, W.: Presence within virtual environments as a function of visual display parameters. Presence Teleoperators Virtual Environ. 5, 274–289 (1996)CrossRefGoogle Scholar
  23. 23.
    Freeman, J., Lessiter, J., Pugh, K., Keogh, E.: When presence and emotion are related, and when they are not. In: Paper presented at the 8th Annual International Workshop on Presence (2005)Google Scholar
  24. 24.
    Ijsselsteijn, W., De, Ridder H., Freeman, J., Avons, S.E., Bouwhuis, D.: Effects of stereoscopic presentation, image motion, and screen size on subjective and objective corroborative measures of presence. Presence Teleoperators Virtual Environ. 10, 298–311 (2001)CrossRefGoogle Scholar
  25. 25.
    Hoffman, H.G., Hollander, A., Schroder, K., Rousseau, S., Furness, T.: Physically touching and tasting virtual objects enhances the realism of virtual experiences. Virtual Reality 3, 226–234 (1998)CrossRefGoogle Scholar
  26. 26.
    Rizzo, A.A., Graap, K., Perlman, K., Mclay, R.N., Rothbaum, B.O., Reger, G., Parsons, T., Difede, J., Pair, J.: Virtual Iraq: Initial results from a VR exposure therapy application for combat-related PTSD. Stud. Health Technol. Inform. 132, 420–425 (2008)Google Scholar
  27. 27.
    Rizzo, A.S., Difede, J., Rothbaum, B.O., Reger, G., Spitalnick, J., Cukor, J., Mclay, R.: Development and early evaluation of the Virtual Iraq/Afghanistan exposure therapy system for combat-related PTSD. Annal. NY Acad. Sci. 1208, 114–125 (2010)CrossRefGoogle Scholar
  28. 28.
    Chen, Y.: Olfactory display: development and application in virtual reality therapy. In: Paper Presented at the 16th International Conference on Artificial Reality and Telexistence (2006)Google Scholar
  29. 29.
    Herz, R.S., Engen, T.: Odor memory: Review and analysis. Psychon. Bull. Rev. 3, 300–313 (1996)CrossRefGoogle Scholar
  30. 30.
    Herz, R.S., Cupchik, G.C.: The emotional distinctiveness of odor-evoked memories. Chem. Senses 20, 517–528 (1995)CrossRefGoogle Scholar
  31. 31.
    Herz, R.S.: Are odors the best cues to memory? a cross-modal comparison of associative memory stimulia. Ann. NY Acad. Sci. 855, 670 (1998)CrossRefGoogle Scholar
  32. 32.
    Chu, S., Downes, J.J.: Proust nose best: Odors are better cues of autobiographical memory. Memory Cogn. 30, 511–518 (2002)CrossRefGoogle Scholar
  33. 33.
    Chu, S., Downes, J.: Odour-evoked autobiographical memories : Psychological investigations of proustian phenomena. Chem. Senses 25, 111–116 (2000)CrossRefGoogle Scholar
  34. 34.
    Powers, M.B., Emmelkamp, P.M.: Virtual reality exposure therapy for anxiety disorders: A meta-analysis. J. Anxiety Disord. 22, 561–569 (2008)CrossRefGoogle Scholar
  35. 35.
    Reger, G.M., Holloway, K.M., Candy, C., Rothbaum, B.O., Difede, J., Rizzo, A.A., Gahm, G.A.: Ef-fectiveness of virtual reality exposure therapy for active duty soldiers in a military mental health clinic. J. Trauma. Stress 24, 93–96 (2011)CrossRefGoogle Scholar
  36. 36.
    Gahm, G., Reger, G., Ingram, M.V., Reger, M., Rizzo, A.: A Multisite, Randomized Clinical Trial of Virtual Reality and Prolonged Exposure Therapy for Active Duty Soldiers with PTSD. DTIC Document (2015)Google Scholar
  37. 37.
    Opriş, D., Pintea, S., García-Palacios, A., Botella, C., Szamosközi, Ş., David, D.: Virtual reality exposure therapy in anxiety disorders: a quantitative meta-analysis. Depression Anxiety 29, 85–93 (2012)CrossRefGoogle Scholar
  38. 38.
    Jackman, A.H., Doty, R.L.: Utility of a Three-Item Smell Identification Test in Detecting Ol-factory Dysfunction. Laryngoscope 115, 2209–2212 (2005)CrossRefGoogle Scholar
  39. 39.
    Schubert, T., Friedmann, F., Regenbrecht, H.: The Experience of Presence: Factor Analytic In-sights. Presence Teleoperators Virtual Environ. 10, 266–281 (2001)CrossRefGoogle Scholar
  40. 40.
    Hasson, D., Arnetz, B.B.: Validation and Findings Comparing VAS vs. likert Scales for Psy-chosocial Measurements. Int. Electron. J. Health Educ. 8, 178–192 (2005)Google Scholar
  41. 41.
    Reips, U.D., Funke, F.: Interval-level measurement with visual analogue scales in Internet-based research: VAS Generator. Behav. Res. Methods 40, 699–704 (2008)CrossRefGoogle Scholar
  42. 42.
    Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3, 203–220 (1993)CrossRefGoogle Scholar
  43. 43.
    Sheridan, T.B.: Musings on telepresence and virtual presence. Presence Teleoperators virtual Environ. 1, 120–126 (1992)CrossRefGoogle Scholar
  44. 44.
    Penny, K.I.: Appropriate critical values when testing for a single multivariate outlier by using the Mahalanobis distance. Appl. Stat. J. Royal Stat. Soc. Ser. C 45, 73–81 (1996)zbMATHGoogle Scholar
  45. 45.
    Spoont, M.R., Nelson, D.B., Murdoch, M., Rector, T., Sayer, N.A., Nugent, S., Westermeyer, J.: Im-pact of Treatment Beliefs and Social Network Encouragement on Initiation of Care by VA Service Users With PTSD. Psychiatr. Serv. 65, 654–662 (2014)CrossRefGoogle Scholar
  46. 46.
    Herz, R.S.: Scents of time. Sciences 40, 34 (2000)CrossRefGoogle Scholar
  47. 47.
    Vermetten, E., Bremner, J.D.: Olfaction as a traumatic reminder in posttraumatic stress disorder: case reports and review. J. Clin. Psychiatry 64, 202–207 (2003)CrossRefGoogle Scholar
  48. 48.
    Kolasinski, E.M.: Simulator Sickness in Virtual Environments. U.S. Army Research Institute (1995)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Benson G. Munyan
    • 1
  • Sandra M. Neer
    • 1
  • Deborah C. Beidel
    • 1
  • Florian Jentsch
    • 1
  1. 1.University of Central FloridaOrlandoUSA

Personalised recommendations