Skip to main content

Modeling Climate Change Effects on Renewable and Non-Renewable Resources

Abstract

This paper models climate change effects differentiating across primary commodities based on their exhaustibility factor. There is a direct pass-through to futures prices, but the impact differs across diverse commodity groups. This paper develops a theoretical model simulating dynamic consumption paths of renewable and non-renewable resources. Dynamic paths are calculated applying the Non-linear Model Predictive Control (NMPC) methodology. Current analysis draws a clear connection between intensifying impacts of climate change, commodity futures price volatility, rising urban-dependency pressures and the renewable and non-renewable resources production and consumption balance among advanced and emerging economies. Accumulated evidence suggests probable higher volatility in commodity prices in the near term, directly affecting small and large economies across all regions.

Keywords

  • Climate change
  • Futures volatility
  • Primary commodities
  • Renewable and non-renewable resources
  • Non-linear model predictive control (NMPC)
  • Urban dependency

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-39887-7_5
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-39887-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Arezki, R., Hadri, K., Loungani, P., & Rao, Y. (2013). Testing the Prebisch-Singer hypothesis since 1650: Evidence from panel techniques that allow for multiple breaks. IMF Working Paper No. 13/180.

    Google Scholar 

  • Baffes, J. (2007). Oil spills on other commodities. Policy Research Working Paper Series, 32(3), 126–134.

    Google Scholar 

  • Baffes, J., & Haniotis, T. (2010). Placing the 2006/08 commodity price boom into perspective. Policy Research Working Paper 5371.

    Google Scholar 

  • Bernard, L., & Semmler W. (Eds.). (2015). The Oxford handbook of the macroeconomics of global warming. New York, NY: Oxford University Press.

    Google Scholar 

  • Bernard, L., Greiner, A., & Semmler, W. (2012). Agricultural commodities and their financialization. AESTIMATIO The IEB International Journal of Finance, 5, 2–25.

    Google Scholar 

  • BP. (2015). 64th edition of the BP Statistical Review of World Energy – Data workbook. Available online: http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html. (Accessed October 31, 2015)

  • Canuto, O. (2014). Commodity Super Cycle to Stick Around a Bit Longer. Available online. http://cfi.co/africa/2014/08/world-bank-group-commodity-super-cycle-to-stick-around-a-bit-longer/. (Accessed October 31, 2015)

  • Dobbs, R., Oppenheim, J., Thompson, F., Mareels, S., Nyquist, S., & Sanghvi, S. (2013). Resource revolution: Tracking global commodity markets. McKinsey Global Institute. Available online: http://www.mckinsey.com/insights/energy_resources_materials/resource_revolution_tracking_global_commodity_markets. (Accessed October 1, 2015)

  • Enders, W., & Holt, M. (2013). The evolving relationships between agricultural and energy commodity prices: A shifting-mean vector autoregressive analysis. NBER 12810.

    Google Scholar 

  • Gevorkyan, A. V., & Kvangraven, I. H. (2016, forthcoming). Assessing recent determinants of borrowing costs in Sub-Saharan Africa. Review of Development Economics. doi:10.1111/rode.12195.

    Google Scholar 

  • Gevorkyan, A., & Gevorkyan, A. (2012). Derivatives, commodities, and social costs: Exploring correlation in economic uncertainty. Contemporary Studies in Economic and Financial Analysis, 94, 47–70.

    CrossRef  Google Scholar 

  • Greiner, A., & Semmler, W. (2008). The global environment, natural resources, and economic growth. Oxford: University Press.

    CrossRef  Google Scholar 

  • Grune, L., & Pannek, J. (2011). Nonlinear model predictive control. New York, NY: Springer.

    CrossRef  Google Scholar 

  • Hamilton, J., & Wu, J. (2014). Effect of index-fund investing on commodity futures prices. NBER Working Paper doi:10.3386/w19892

  • Harvey, M., & Pilgrim, S. (2011). The new competition for land: Food, energy, and climate change. Food Policy, 36(1), S40–S51.

    Google Scholar 

  • Havlík, P., et al. (2013). Crop productivity and the global livestock sector: Implications for land use change and greenhouse gas emissions. American Journal of Agricultural Economics, 95(2), 442–448.

    CrossRef  Google Scholar 

  • Henderson, V. (2002). Urbanization in developing countries. The World Bank Research Observer, 17(1), 89–112.

    CrossRef  Google Scholar 

  • Herrero, M., et al. (2010). Smart investments in sustainable food production: Revisiting mixed crop-livestock systems. Science, 327, 822–825.

    CrossRef  Google Scholar 

  • International Monetary Fund. (2015). IMF Primary Commodity Prices. Available online: http://www.imf.org/external/np/res/commod/index.aspx. (Accessed October 25, 2015)

    Google Scholar 

  • Jones, C., & Sands, R. (2013). Impact of agricultural productivity gains on greenhouse gas emissions: A global analysis. American journal of agricultural economics, 95(5), 1309–1316.

    CrossRef  Google Scholar 

  • Knittel, C., & Pindyck, R. (2013). The simple economics of commodity price speculation. NBER Working Paper doi:10.3386/w18951

  • Manera, M., Nicolini, M., & Vignati, I. (2012). Returns in commodities futures markets and financial speculation: A multivariate GARCH approach. FEEM Working Paper No. 23.2012. Available at SSRN: http://ssrn.com/abstract=2041177

    Google Scholar 

  • NASA/GISS. (2015). Global Temperature. Available online: http://climate.nasa.gov/vital-signs/global-temperature/. (Accessed October 25, 2015)

  • Quigley, J. M. (1998). Urban diversity and economic growth. Journal of Economic Perspectives, 12, 127–138.

    CrossRef  Google Scholar 

  • Roache, K. (2010). What explains the rise in food price volatility? IMF Working Paper, WP/10/129

    Google Scholar 

  • Ruta, M., & Venables, A. (2012). International trade in natural resources: Practice and policy. World Trade Organization, Working Paper ERSD-2012-07.

    Google Scholar 

  • Schlenker, W., & Roberts, M. (2009). Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. PNAS, 106(37), 15594–15598.

    CrossRef  Google Scholar 

  • Tilman, D., Balzerb, C., Hillc, J., & Beforta, B. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20260–20264.

    Google Scholar 

  • United Nations. (2015). World urbanization prospects the 2014 revision. New York, NY: United Nations.

    Google Scholar 

  • World Bank. (2000). Dynamic cities as engines of economic growth, Entering the 21st Century: World Development Reporter: 125–138.

    Google Scholar 

  • World Bank Development Indicators. (2015). World Development Indicators – online database. Available online: http://data.worldbank.org/products/wdi. (Accessed October 1, 2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr V. Gevorkyan .

Editor information

Editors and Affiliations

Appendix

Appendix

See Table 1.

Table 1 Country group code and name

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gevorkyan, A.V., Gevorkyan, A. (2016). Modeling Climate Change Effects on Renewable and Non-Renewable Resources. In: Bernard, L., Nyambuu, U. (eds) Dynamic Modeling, Empirical Macroeconomics, and Finance. Springer, Cham. https://doi.org/10.1007/978-3-319-39887-7_5

Download citation